Immobilization Of Cells
Download Immobilization Of Cells full books in PDF, epub, and Kindle. Read online free Immobilization Of Cells ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ichiro Chibata |
Publisher | : Elsevier |
Total Pages | : 372 |
Release | : 2014-06-28 |
Genre | : Science |
ISBN | : 1483215865 |
Immobilized Microbial Cells, Volume 4 provides an overview of the methods of immobilization, applications, and ways of utilizing immobilized microbial cells and subcellular organelles and chloroplasts as biocatalysts. This volume is comprised of seven chapters. It begins with the historical background of immobilized cell research. Subsequent chapters focus on the methods of immobilization and applications of immobilized microbial cells, living cells, and organelles. The last two chapters discuss gas production of immobilized cells for energy generation and the chemical engineering analysis of immobilized-cell systems. The book will be of great use to chemists and chemical engineers.
Author | : Jose M. Guisan |
Publisher | : Humana |
Total Pages | : 0 |
Release | : 2016-08-27 |
Genre | : Science |
ISBN | : 9781493959884 |
For most of industrial applications, enzymes and cells have to be immobilized, via very simple and cost-effective protocols, in order to be re-used for very long periods of time. From this point of view, immobilization, simplicity and stabilization have to be strongly related concepts. The third edition of Immobilization of Enzymes and Cells expands upon and updates the previous editions with current, detailed protocols for immobilization. With new chapters on protocols for immobilization of enzymes and cells which may be useful to greatly improve the functional properties of enzymes and cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Immobilization of Enzymes and Cells, Third Edition demonstrates simple and efficient protocols for the preparation, characterization, and utilization of immobilized enzymes and cells.
Author | : Jose M. Guisan |
Publisher | : Humana |
Total Pages | : 495 |
Release | : 2021-01-29 |
Genre | : Science |
ISBN | : 9781071602171 |
This fourth edition volume expands on the previous editions with new insights on important aspects to take into accounting when immobilizing enzymes and cells, illustrating outstanding examples that support those aspects, and exploring ways to fabricate and characterize heterogeneous biocatalysts including both immobilized enzymes and cells. The transformation of soluble and usually instable enzymes into heterogeneous and highly stable biocatalysts is strongly emphasized. The chapters in this book cover topics such as the importance of enzyme orientation on the support surface; application and characterization of immobilized enzymes; different functionalization chemistries for the modulation of the immobilized enzyme properties; co-immobilization of multi-enzyme systems; new analytical techniques for the characterization of heterogeneous biocatalysts; protocols for cell entrapment in alginate; preparation and characterization of biofilms; and cell encapsulation technologies. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Immobilization of Enzymes and Cells: Methods and Protocols, Fourth Edition is a valuable resource for researchers interested in expanding their knowledge of this developing field.
Author | : Viktor Nedovic |
Publisher | : Springer Science & Business Media |
Total Pages | : 542 |
Release | : 2013-04-17 |
Genre | : Science |
ISBN | : 9401716382 |
Cell Immobilisation Biotechnology Biotechnology is divided into two volumes. The first volume is dedicated to fundamental aspects of cell immobilisation while the second volume deals with the diverse applications of this technology. The first volume, Fundamentals of Cell Immobilisation Biotechnology, comprises 26 chapters arranged into four parts: Materials for cell immobilisation/encapsulation, Methods and technologies for cell immobilisation/encapsulation, Carrier characterisation and bioreactor design, and Physiology of immobilised cells: techniques and mathematical modelling.
Author | : Viktor Nedovic |
Publisher | : Springer Science & Business Media |
Total Pages | : 556 |
Release | : 2006-04-06 |
Genre | : Science |
ISBN | : 140203363X |
Cell immobilisation biotechnology is a multidisciplinary area, shown to have an important impact on many scientific subdisciplines – including biomedicine, pharmacology, cosmetology, food and agricultural sciences, beverage production, industrial waste treatment, analytical applications, biologics production. "Cell Immobilisation Biotechnology" is an outcome of the editors’ intention to collate the extensive and widespread information on fundamental aspects and applications of immobilisation/encapsulation biotechnology into a comprehensive reference work and to provide an overview of the most recent results and developments in this domain. "Cell Immobilisation Biotechnology" is divided into the two book volumes, FOBI 8A and FOBI 8B. The FOBI 8A volume, Fundamentals of Cell Immobilisation Biotechnology, is dedicated to fundamental aspects of cell immobilisation while the present volume, FOBI 8B, Applications of Cell Immobilisation Biotechnology, deals with diverse applications of this technology.
Author | : José M. Guisán |
Publisher | : Springer Science & Business Media |
Total Pages | : 447 |
Release | : 2008-02-05 |
Genre | : Science |
ISBN | : 1597450537 |
Enzymes and whole cells are able to catalyze the most complex chemical processes under the most benign experimental and environmental conditions. In this way, enzymes and cells could be excellent catalysts for a much more sustainable chemical industry. However, enzymes and cells also have some limitations for nonbiological applications: fine chemistry, food chemistry, analysis, therapeutics, and so on. Enzymes and cells may be unstable, difficult to handle under nonconventional conditions, poorly selective toward synthetic substrates, and so forth. From this point of view, the transformation—from the laboratory to industry—of chemical processes catalyzed by enzymes and cells may be one of the most complex and exciting goals in biotechnology. For many industrial applications, enzymes and cells have to be immobilized, via very simple and cost-effective protocols, in order to be re-used over very long periods of time. From this point of view, immobilization, simplicity, and stabilization have to be strongly related concepts. Over the last 30 years, a number of protocols for the immobilization of cells and enzymes have been reported in scientific literature. However, only very few protocols are simple and useful enough to greatly improve the functional properties of enzymes and cells, activity, stability, selectivity, and related properties.
Author | : J. Tampion |
Publisher | : Cambridge University Press |
Total Pages | : 268 |
Release | : 1987-12-10 |
Genre | : Medical |
ISBN | : 9780521255561 |
This 1987 book gives a coherent overview of preparation and uses of immobilized enzymes.
Author | : Willem_M. Kühtreiber |
Publisher | : Springer Science & Business Media |
Total Pages | : 457 |
Release | : 2013-12-01 |
Genre | : Medical |
ISBN | : 1461215862 |
The concept of using encapsulation for the immunoprotection of transplanted cells was introduced for the first time in the 1960s. "[Microencapsulated cells] might be protected from destruction and from partici pation in immunological processes, while the enclosing membrane would be permeable to small molecules of specific cellular product which could then enter the general extracellular compartment of the recipient. For instance, encapsulated endocrine cells might survive and maintain an effective supply of hormone." (Chang, Ph. D. Thesis, McGill University, 1965; Chang et aI., Can J Physiol PharmacoI44:115-128, 1966). We asked Connaught Laboratories, Ltd., in Toronto to put this concept into practice. In 1980, Lim and Sun from Connaught Laboratories reported on the successful implantation of poly-I-Iysine-alginate encapsu lated rat islets into a foreign host. [Lim and Sun, Science 210:908-909, 1980]. Now many groups around the world are making tremendous progress in the encapsulation of a multitude of cell types. Kiihtreiber, Lanza, and Chick have invited many cell encapsulation groups from around the world to contribute to this book. The result is a very useful reference book in this rapidly growing area. With so many excellent au thors describing in detail the different areas of cell encapsulation, my role here will be to briefly discuss a few points.
Author | : Winfried Hartmeier |
Publisher | : Springer Science & Business Media |
Total Pages | : 217 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 3642733646 |
Biotechnological processes often require the use of immobilized biocatalysts. This translation of the most successful German edition introduces the theoretical background of this rapidly growing field followed by a detailed description of the various techniques of immobilizing, characterizing, and using biocatalysts. The comprehensive discussion of possible applications in industrial processes and in basic research results in a practical guide for everyone involved in these techniques. Furthermore, some selected experiments are added in order to facilitate the understanding of the theoretical reports.
Author | : Shang-Tian Yang |
Publisher | : Elsevier |
Total Pages | : 685 |
Release | : 2011-08-11 |
Genre | : Technology & Engineering |
ISBN | : 0080466710 |
Bioprocessing for Value-Added Products from Renewable Resources provides a timely review of new and unconventional techniques for manufacturing high-value products based on simple biological material. The book discusses the principles underpinning modern industrial biotechnology and describes a unique collection of novel bioprocesses for a sustainable future. This book begins in a very structured way. It first looks at the modern technologies that form the basis for creating a bio-based industry before describing the various organisms that are suitable for bioprocessing - from bacteria to algae - as well as their unique characteristics. This is followed by a discussion of novel, experimental bioprocesses, such as the production of medicinal chemicals, the production of chiral compounds and the design of biofuel cells. The book concludes with examples where biological, renewable resources become an important feedstock for large-scale industrial production. This book is suitable for researchers, practitioners, students, and consultants in the bioprocess and biotechnology fields, and for others who are interested in biotechnology, engineering, industrial microbiology and chemical engineering. ·Reviews the principles underpinning modern industrial biotechnology ·Provides a unique collection of novel bioprocesses for a sustainable future ·Gives examples of economical use of renewable resources as feedstocks ·Suitable for both non-experts and experts in the bioproduct industry