Comprehensive Dissertation Index

Comprehensive Dissertation Index
Author:
Publisher:
Total Pages: 892
Release: 1984
Genre: Dissertations, Academic
ISBN:

Vols. for 1973- include the following subject areas: Biological sciences, Agriculture, Chemistry, Environmental sciences, Health sciences, Engineering, Mathematics and statistics, Earth sciences, Physics, Education, Psychology, Sociology, Anthropology, History, Law & political science, Business & economics, Geography & regional planning, Language & literature, Fine arts, Library & information science, Mass communications, Music, Philosophy and Religion.

Problems and Solutions on Atomic, Nuclear and Particle Physics

Problems and Solutions on Atomic, Nuclear and Particle Physics
Author: Yung-kuo Lim
Publisher: World Scientific Publishing Company
Total Pages: 658
Release: 2000
Genre: Science
ISBN: 9789810239176

Atomic and Molecular Physics : Atomic Physics (1001--1122) - Molecular Physics (1123--1142) - Nuclear Physics : Basic Nuclear Properties (2001--2023) - Nuclear Binding Energy, Fission and Fusion (2024--2047) - The Deuteron and Nuclear forces (2048--2058) - Nuclear Models (2059--2075) - Nuclear Decays (2076--2107) - Nuclear Reactions (2108--2120) - Particle Physics : Interactions and Symmetries (3001--3037) - Weak and Electroweak Interactions, Grand Unification Theories (3038--3071) - Structure of Hadros and the Quark Model (3072--3090) - Experimental Methods and Miscellaneous Topics : Kinematics of High-Energy Particles (4001--4061) - Interactions between Radiation and Matter (4062--4085) - Detection Techniques and Experimental Methods (4086--4105) - Error Estimation and Statistics (4106--4118) - Particle Beams and Accelerators (4119--4131).

Physics of Surfaces and Interfaces

Physics of Surfaces and Interfaces
Author: Harald Ibach
Publisher: Springer Science & Business Media
Total Pages: 653
Release: 2006-11-18
Genre: Science
ISBN: 3540347100

This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. It is designed as a handbook for the researcher as well as a study-text for graduate students. Written explanations are supported by 350 graphs and illustrations.

Giant Resonances in Atoms, Molecules, and Solids

Giant Resonances in Atoms, Molecules, and Solids
Author: J.P. Connerade
Publisher: Springer
Total Pages: 557
Release: 2013-12-20
Genre: Technology & Engineering
ISBN: 1489920048

Often, a new area of science grows at the confines between recognised subject divisions, drawing upon techniques and intellectual perspectives from a diversity of fields. Such growth can remain unnoticed at first, until a characteristic fami ly of effects, described by appropriate key words, has developed, at which point a distinct subject is born. Such is very much the case with atomic 'giant resonances'. For a start, their name itself was borrowed from the field of nuclear collective resonances. The energy range in which they occur, at the juncture of the extreme UV and the soft X-rays, remains to this day a meeting point of two different experimental techniques: the grating and the crystal spectrometer. The impetus of synchrotron spectroscopy also played a large part in developing novel methods, described by many acronyms, which are used to study 'giant resonances' today. Finally, although we have described them as 'atomic' to differentiate them from their counterparts in Nuclear Physics, their occurrence on atomic sites does not inhibit their existence in molecules and solids. In fact, 'giant resonances' provide a new unifying theme, cutting accross some of the traditional scientific boundaries. After much separate development, the spectroscopies of the atom in various environments can meet afresh around this theme of common interest. Centrifugal barrier effects and 'giant resonances' proper emerged almost simultaneously in the late 1960's from two widely separated areas of physics, namely the study of free atoms and of condensed matter.

Elements of Quantum Optics

Elements of Quantum Optics
Author: Pierre Meystre
Publisher: Springer Science & Business Media
Total Pages: 432
Release: 2013-03-09
Genre: Science
ISBN: 3662038773

From the reviews: "This is a book that should be found in any physics library. It is extremely useful for all graduate students, Ph.D. students and researchers interested in the quantum physics of light." Optics & Photonics News

Laser Cooling and Trapping

Laser Cooling and Trapping
Author: Harold J. Metcalf
Publisher: Springer Science & Business Media
Total Pages: 329
Release: 2012-12-06
Genre: Science
ISBN: 146121470X

Intended for advanced undergraduates and beginning graduates with some basic knowledge of optics and quantum mechanics, this text begins with a review of the relevant results of quantum mechanics, before turning to the electromagnetic interactions involved in slowing and trapping atoms and ions, in both magnetic and optical traps. The concluding chapters discuss a broad range of applications, from atomic clocks and studies of collision processes, to diffraction and interference of atomic beams at optical lattices and Bose-Einstein condensation.

Applications of Electronic Structure Theory

Applications of Electronic Structure Theory
Author: Henry Schaefer
Publisher: Springer Science & Business Media
Total Pages: 470
Release: 2012-12-06
Genre: Science
ISBN: 1468485415

These two volumes deal with the quantum theory of the electronic structure of ab initio is the notion that approximate solutions molecules. Implicit in the term of Schrodinger's equation are sought "from the beginning," i. e. , without recourse to experimental data. From a more pragmatic viewpoint, the distin guishing feature of ab initio theory is usually the fact that no approximations are involved in the evaluation of the required molecular integrals. Consistent with current activity in the field, the first of these two volumes contains chapters dealing with methods per se, while the second concerns the application of these methods to problems of chemical interest. In a sense, the motivation for these volumes has been the spectacular recent success of ab initio theory in resolving important chemical questions. However, these applications have only become possible through the less visible but equally important efforts of those developing new theoretical and computational methods and models. Henry F. Schaefer vii Contents Contents of Volume 3 xv Chapter 1. A Priori Geometry Predictions 1. A. Pople 1. Introduction . . . . . . . . . . . . . . . . . . . 1 2. Equilibrium Geometries by Hartree-Fock Theory 2 2. 1. Restricted and Unrestricted Hartree-Fock Theories 2 2. 2. Basis Sets for Hartree-Fock Studies . . . . . 4 2. 3. Hartree-Fock Structures for Small Molecules . 6 2. 4. Hartree-Fock Structures for Larger Molecules 12 3. Equilibrium Geometries with Correlation . . 18 4. Predictive Structures for Radicals and Cations 20 5. Conclusions 23 References 24 Chapter 2. Barriers to Rotation and Inversion Philip W. Payne and Leland C.

New Directions in Atomic Physics

New Directions in Atomic Physics
Author: C.T. Whelan
Publisher: Springer Science & Business Media
Total Pages: 392
Release: 1999-09-30
Genre: Science
ISBN: 9780306461811

The last few years have seen some remarkable advances in the understanding of atomic phenomena. It is now possible to isolate atomic systems in traps, measure in coincidence the fragments of collision processes, routinely produce, and study multicharged ions. One can look at bulk matter in such a way that the fundamental atomic character is clearly evident and work has begun to tease out the properties of anti matter. The papers in this book reflect many aspects of modem Atomic Physics. They correspond to the invited talks at a conference dedicated to the study of "New Directions in Atomic Physics," which took place in Magdalene College, Cambridge in July of 1998. The meeting was designed as a way of taking stock of what has been achieved and, it was hoped, as a means of stimulating new research in new areas, along new lines. Consequently, an effort was made to touch on as many directions as we could in the four days of the meeting. We included some talks which overviewed whole subfields, as well as quite a large number of research contributions. There is a unity to Physics and we tried to avoid any artificial division between theory and experiment. We had roughly the same number of talks from those who are primarily concerned with making measurements, and from those who spend their lives trying to develop the theory to describe the experiments.

Many-Body Quantum Theory in Condensed Matter Physics

Many-Body Quantum Theory in Condensed Matter Physics
Author: Henrik Bruus
Publisher: Oxford University Press
Total Pages: 458
Release: 2004-09-02
Genre: Science
ISBN: 0198566336

The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.

Electron Impact Ionization

Electron Impact Ionization
Author: T.D. Märk
Publisher: Springer Science & Business Media
Total Pages: 395
Release: 2013-06-29
Genre: Science
ISBN: 3709140285

It is perhaps surprising that a process which was one of the first to be studied on an atomic scale, and a process which first received attention over seven decades ago, continues to be the object of diverse and intense research efforts. Such is the case with the (seemingly) conceptually simple and familiar mechanism of electron impact ionization of atoms, molecules, and ions. Not only has the multi-body nature of the collision given ground to theoretical effort only grudgingly, but also the variety and subtlety of processes contributing to ionization have helped insure that progress has come only with commensurate work: no pain - no gain. Modern experimental methods have made it possible to effectively measure and explore threshold laws, differential cross sections, partial cross sections, inner-shell ionization, and the ionization of unstable species such as radicals and ions. In most instances the availability of experimental data has provided impetus and guidance for further theoretical progress.