Hyperspherical Harmonics And Their Physical Applications

Hyperspherical Harmonics And Their Physical Applications
Author: James Emil Avery
Publisher: World Scientific
Total Pages: 300
Release: 2017-11-27
Genre: Science
ISBN: 9813229314

Hyperspherical harmonics are extremely useful in nuclear physics and reactive scattering theory. However, their use has been confined to specialists with very strong backgrounds in mathematics. This book aims to change the theory of hyperspherical harmonics from an esoteric field, mastered by specialists, into an easily-used tool with a place in the working kit of all theoretical physicists, theoretical chemists and mathematicians. The theory presented here is accessible without the knowledge of Lie-groups and representation theory, and can be understood with an ordinary knowledge of calculus. The book is accompanied by programs and exercises designed for teaching and practical use.

Hyperspherical Harmonics

Hyperspherical Harmonics
Author: John S. Avery
Publisher: Springer Science & Business Media
Total Pages: 265
Release: 2012-12-06
Genre: Science
ISBN: 9400923236

where d 3 3)2 ( L x - -- i3x j3x j i i>j Thus the Gegenbauer polynomials play a role in the theory of hyper spherical harmonics which is analogous to the role played by Legendre polynomials in the familiar theory of 3-dimensional spherical harmonics; and when d = 3, the Gegenbauer polynomials reduce to Legendre polynomials. The familiar sum rule, in 'lrlhich a sum of spherical harmonics is expressed as a Legendre polynomial, also has a d-dimensional generalization, in which a sum of hyper spherical harmonics is expressed as a Gegenbauer polynomial (equation (3-27»: The hyper spherical harmonics which appear in this sum rule are eigenfunctions of the generalized angular monentum 2 operator A , chosen in such a way as to fulfil the orthonormality relation: VIe are all familiar with the fact that a plane wave can be expanded in terms of spherical Bessel functions and either Legendre polynomials or spherical harmonics in a 3-dimensional space. Similarly, one finds that a d-dimensional plane wave can be expanded in terms of HYPERSPHERICAL HARMONICS xii "hyperspherical Bessel functions" and either Gegenbauer polynomials or else hyperspherical harmonics (equations ( 4 - 27) and ( 4 - 30) ) : 00 ik·x e = (d-4)!!A~oiA(d+2A-2)j~(kr)C~(~k'~) 00 (d-2)!!I(0) 2: iAj~(kr) 2:Y~ (["2k)Y (["2) A A=O ). l). l)J where I(O) is the total solid angle. This expansion of a d-dimensional plane wave is useful when we wish to calculate Fourier transforms in a d-dimensional space.

Geometric Applications of Fourier Series and Spherical Harmonics

Geometric Applications of Fourier Series and Spherical Harmonics
Author: H. Groemer
Publisher: Cambridge University Press
Total Pages: 343
Release: 1996-09-13
Genre: Mathematics
ISBN: 0521473187

This book provides a comprehensive presentation of geometric results, primarily from the theory of convex sets, that have been proved by the use of Fourier series or spherical harmonics. An important feature of the book is that all necessary tools from the classical theory of spherical harmonics are presented with full proofs. These tools are used to prove geometric inequalities, stability results, uniqueness results for projections and intersections by hyperplanes or half-spaces and characterisations of rotors in convex polytopes. Again, full proofs are given. To make the treatment as self-contained as possible the book begins with background material in analysis and the geometry of convex sets. This treatise will be welcomed both as an introduction to the subject and as a reference book for pure and applied mathematics.

State of The Art of Molecular Electronic Structure Computations: Correlation Methods, Basis Sets and More

State of The Art of Molecular Electronic Structure Computations: Correlation Methods, Basis Sets and More
Author:
Publisher: Academic Press
Total Pages: 362
Release: 2019-09-07
Genre: Science
ISBN: 0128161752

State of the Art of Molecular Electronic Structure Computations: Correlation Methods, Basis Sets and More, Volume 79 in the Advances in Quantum Chemistry series, presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and biology. Chapters in this new release include Computing accurate molecular properties in real space using multiresolution analysis, Self-consistent electron-nucleus cusp correction for molecular orbitals, Correlated methods for computational spectroscopy, Potential energy curves for the NaH molecule and its cation with the cock space coupled cluster method, and much more. - Presents surveys of current topics in this rapidly-developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and biology - Features detailed reviews written by leading international researchers

The de Sitter (dS) Group and its Representations

The de Sitter (dS) Group and its Representations
Author: Mohammad Enayati
Publisher: Springer Nature
Total Pages: 223
Release: 2022-11-30
Genre: Science
ISBN: 3031160452

This book reviews the construction of elementary systems living in de Sitter (dS) spacetime, in both the classical and quantum senses. Field theories on dS spacetime are among the most studied mathematical models of the Universe, whether for its earlier period (inflationary phase) or for its current phase of expansion acceleration (dark energy or cosmological constant). Classical elementary systems are Hamiltonian phase spaces, which are associated with co-adjoint orbits of the relativity group. On the other hand, quantum elementary systems are associated with (projective) unitary irreducible representations of the (possibly extended) relativity group (or one of its covering). This study emphasizes the conceptual issues arising in the formulation of such systems and discusses known results in a mathematically rigorous way. Particular attention is paid to: “smooth” transition from classical to quantum theory; physical content under vanishing curvature, from the point of view of a local (“tangent”) Minkowskian observer; and thermal interpretation (on the quantum level), in the sense of the Gibbons-Hawking temperature. Such a mathematical construction is of paramount importance to the understanding of the early Universe (due to the critical role that the dS metric plays in the inflationary cosmological scenarii) as well as to the construction of possible models for late-time cosmology (since a small positive cosmological constant or dark energy seems to be required by recent data). In this sense, this book uniquely blends mathematical physics (spacetime symmetry on classical and quantum levels) and theoretical physics (quantization, quantum field theory, and cosmology). Moreover, the level of exposition varies in different parts of the book so that both experts and beginners alike can utilize the book.

Hyperspherical Harmonics and Generalized Sturmians

Hyperspherical Harmonics and Generalized Sturmians
Author: John S. Avery
Publisher: Springer Science & Business Media
Total Pages: 202
Release: 2006-04-11
Genre: Science
ISBN: 0306469448

This text explores the connections between the theory of hyperspherical harmonics, momentum-space quantum theory and generalized Sturmian basis functions. It also introduces methods which may be used to solve many-particle problems directly, without the use of the self-consistent-field approximation.; The method of many-electron Sturmians offers an interesting alternative to the usual SCF-CI methods for calculating atomic and molecular structure. When many-electron Sturmians are used, and when the basis potential is chosen to be the attractive potential of the nuclei in the system, the following advantages are offered: the matrix representation of the nuclear attraction potential is diagonal; the kinetic energy term vanishes from the secular equation; the Slater exponents of the atomic orbitals are automatically optimized; convergence is rapid; a correlated solution to the many-electron problem can be obtained directly, without the use of the SCF approximation; and excited states can be obtained with good accuracy.; The text should be of interest to advanced students and research workers in theoretical chemistry, physics and mathematics.

Clifford Algebras and Their Applications in Mathematical Physics

Clifford Algebras and Their Applications in Mathematical Physics
Author: J.S.R. Chisholm
Publisher: Springer Science & Business Media
Total Pages: 589
Release: 2012-12-06
Genre: Mathematics
ISBN: 9400947283

William Kingdon Clifford published the paper defining his "geometric algebras" in 1878, the year before his death. Clifford algebra is a generalisation to n-dimensional space of quaternions, which Hamilton used to represent scalars and vectors in real three-space: it is also a development of Grassmann's algebra, incorporating in the fundamental relations inner products defined in terms of the metric of the space. It is a strange fact that the Gibbs Heaviside vector techniques came to dominate in scientific and technical literature, while quaternions and Clifford algebras, the true associative algebras of inner-product spaces, were regarded for nearly a century simply as interesting mathematical curiosities. During this period, Pauli, Dirac and Majorana used the algebras which bear their names to describe properties of elementary particles, their spin in particular. It seems likely that none of these eminent mathematical physicists realised that they were using Clifford algebras. A few research workers such as Fueter realised the power of this algebraic scheme, but the subject only began to be appreciated more widely after the publication of Chevalley's book, 'The Algebraic Theory of Spinors' in 1954, and of Marcel Riesz' Maryland Lectures in 1959. Some of the contributors to this volume, Georges Deschamps, Erik Folke Bolinder, Albert Crumeyrolle and David Hestenes were working in this field around that time, and in their turn have persuaded others of the importance of the subject.

Group Theory in Physics

Group Theory in Physics
Author: Wu-Ki Tung
Publisher: World Scientific
Total Pages: 368
Release: 1985
Genre: Science
ISBN: 9971966565

An introductory text book for graduates and advanced undergraduates on group representation theory. It emphasizes group theory's role as the mathematical framework for describing symmetry properties of classical and quantum mechanical systems. Familiarity with basic group concepts and techniques is invaluable in the education of a modern-day physicist. This book emphasizes general features and methods which demonstrate the power of the group-theoretical approach in exposing the systematics of physical systems with associated symmetry. Particular attention is given to pedagogy. In developing the theory, clarity in presenting the main ideas and consequences is given the same priority as comprehensiveness and strict rigor. To preserve the integrity of the mathematics, enough technical information is included in the appendices to make the book almost self-contained. A set of problems and solutions has been published in a separate booklet.