Hypersonic Flow Theory 1 Inviscid Flows
Download Hypersonic Flow Theory 1 Inviscid Flows full books in PDF, epub, and Kindle. Read online free Hypersonic Flow Theory 1 Inviscid Flows ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Wallace Hayes |
Publisher | : Elsevier |
Total Pages | : 481 |
Release | : 2012-12-02 |
Genre | : Technology & Engineering |
ISBN | : 032314876X |
Hypersonic Flow Theory presents the fundamentals of fluid mechanics, focusing on the hypersonic flow theory and approaches in theoretical aerodynamics. This book discusses the assumptions underlying hypersonic flow theory, unified supersonic-hypersonic similitude, two-dimensional and axisymmetric bodies, and circular cylinder. The constant-streamtube-area approximation, streamtube-continuity methods, and tangent-wedge and tangent-cone are also deliberated. This text likewise covers the similar laminar boundary layer solutions, bluntness induced interactions on slender bodies, and free molecule transfer theory. The dynamics of hypersonic flight or hypersonic wing theory, magnetohydrodynamic theory, or any developments involving treatment of the Boltzmann equation are not included. This publication is intended for hypersonic aerodynamicists, students, and researchers conducting work on the hypersonic flow phenomena.
Author | : Wallace D. Hayes |
Publisher | : Courier Corporation |
Total Pages | : 628 |
Release | : 2012-07-13 |
Genre | : Science |
ISBN | : 0486160483 |
Unified, self-contained view of nonequilibrium effects, body geometries, and similitudes available in hypersonic flow and thin shock layer; appropriate for graduate-level courses in hypersonic flow theory. 1966 edition.
Author | : John David Anderson |
Publisher | : AIAA |
Total Pages | : 710 |
Release | : 1989 |
Genre | : Science |
ISBN | : 9781563474590 |
This book is a self-contained text for those students and readers interested in learning hypersonic flow and high-temperature gas dynamics. It assumes no prior familiarity with either subject on the part of the reader. If you have never studied hypersonic and/or high-temperature gas dynamics before, and if you have never worked extensively in the area, then this book is for you. On the other hand, if you have worked and/or are working in these areas, and you want a cohesive presentation of the fundamentals, a development of important theory and techniques, a discussion of the salient results with emphasis on the physical aspects, and a presentation of modern thinking in these areas, then this book is also for you. In other words, this book is designed for two roles: 1) as an effective classroom text that can be used with ease by the instructor, and understood with ease by the student; and 2) as a viable, professional working tool for engineers, scientists, and managers who have any contact in their jobs with hypersonic and/or high-temperature flow.
Author | : Vladimir Neyland |
Publisher | : Butterworth-Heinemann |
Total Pages | : 563 |
Release | : 2008-02-06 |
Genre | : Science |
ISBN | : 0080555772 |
This is the first book in English devoted to the latest developments in fluid mechanics and aerodynamics. Written by the leading authors in the field, based at the renowned Central Aerohydrodynamic Institute in Moscow, it deals with viscous gas flow problems that arise from supersonic flows. These complex problems are central to the work of researchers and engineers dealing with new aircraft and turbomachinery development (jet engines, compressors and other turbine equipment). The book presents the latest asymptotical models, simplified Navier-Stokes equations and viscous-inviscid interaction theroies and will be of critical interest to researchers, engineers, academics and advanced graduate students in the areas of fluid mechanics, compressible flows, aerodynamics and aircraft design, applied mathematics and computational fluid dynamics. - The first book in English to cover the latest methodology for incopressible flow analysis of high speed aerodynamics, an essential topic for those working on new generation aircraft and turbomachinery - Authors are internationally recognised as the leading figures in the field - Includes a chapter introducing asymptotical methods to enable advanced level students to use the book
Author | : F.R. Riddell |
Publisher | : Elsevier |
Total Pages | : 769 |
Release | : 2012-12-02 |
Genre | : Transportation |
ISBN | : 0323142621 |
Progress in Astronautics and Rocketry, Volume 7: Hypersonic Flow Research compiles papers presented at a conference on hypersonics held at the Massachusetts Institute of Technology in August 1961. This book discusses the low Reynolds number effects, chemical kinetics effects, inviscid flow calculations, and experimental techniques relating to the problems in acquiring an understanding of hypersonic flow. The structure and composition of hypersonic wakes with attendant complex chemical kinetic effects is only briefly mentioned. This text consists of five parts. Parts A to C comprise of theoretical papers on the problems of calculating flow fields at hypersonic speeds. The experimental techniques that are of immediate practical interest in view of the difficulty of flight testing are discussed in Parts D and E. This publication is beneficial to engineers involved in advanced design problems.
Author | : John J. Bertin |
Publisher | : AIAA |
Total Pages | : 644 |
Release | : 1994 |
Genre | : Science |
ISBN | : 9781563470363 |
A modern treatment of hypersonic aerothermodynamics for students, engineers, scientists, and program managers involved in the study and application of hypersonic flight. It assumes an understanding of the basic principles of fluid mechanics, thermodynamics, compressible flow, and heat transfer. Ten chapters address: general characterization of hypersonic flows; basic equations of motion; defining the aerothermodynamic environment; experimental measurements of hypersonic flows; stagnation-region flowfield; the pressure distribution; the boundary layer and convective heat transfer; aerodynamic forces and moments; viscous interactions; and aerothermodynamics and design considerations. Includes sample exercises and homework problems. Annotation copyright by Book News, Inc., Portland, OR
Author | : Radyadour Kh. Zeytounian |
Publisher | : Springer Science & Business Media |
Total Pages | : 560 |
Release | : 2006-04-10 |
Genre | : Science |
ISBN | : 0306483866 |
for the fluctuations around the means but rather fluctuations, and appearing in the following incompressible system of equations: on any wall; at initial time, and are assumed known. This contribution arose from discussion with J. P. Guiraud on attempts to push forward our last co-signed paper (1986) and the main idea is to put a stochastic structure on fluctuations and to identify the large eddies with a part of the probability space. The Reynolds stresses are derived from a kind of Monte-Carlo process on equations for fluctuations. Those are themselves modelled against a technique, using the Guiraud and Zeytounian (1986). The scheme consists in a set of like equations, considered as random, because they mimic the large eddy fluctuations. The Reynolds stresses are got from stochastic averaging over a family of their solutions. Asymptotics underlies the scheme, but in a rather loose hidden way. We explain this in relation with homogenizati- localization processes (described within the ยง3. 4 ofChapter 3). Ofcourse the mathematical well posedness of the scheme is not known and the numerics would be formidable! Whether this attempt will inspire researchers in the field of highly complex turbulent flows is not foreseeable and we have hope that the idea will prove useful.
Author | : Ernst Heinrich Hirschel |
Publisher | : Springer Science & Business Media |
Total Pages | : 419 |
Release | : 2006-01-16 |
Genre | : Technology & Engineering |
ISBN | : 3540265198 |
The last two decades have brought two important developments for aeroth- modynamics. One is that airbreathing hypersonic flight became the topic of technology programmes and extended system studies. The other is the emergence and maturing of the discrete numerical methods of aerodyn- ics/aerothermodynamics complementary to the ground-simulation facilities, with the parallel enormous growth of computer power. Airbreathing hypersonic flight vehicles are, in contrast to aeroassisted re-entry vehicles, drag sensitive. They have, further, highly integrated lift and propulsion systems. This means that viscous eflFects, like boundary-layer development, laminar-turbulent transition, to a certain degree also strong interaction phenomena, are much more important for such vehicles than for re-entry vehicles. This holds also for the thermal state of the surface and thermal surface effects, concerning viscous and thermo-chemical phenomena (more important for re-entry vehicles) at and near the wall. The discrete numerical methods of aerodynamics/aerothermodynamics permit now - what was twenty years ago not imaginable - the simulation of high speed flows past real flight vehicle configurations with thermo-chemical and viscous effects, the description of the latter being still handicapped by in sufficient flow-physics models. The benefits of numerical simulation for flight vehicle design are enormous: much improved aerodynamic shape definition and optimization, provision of accurate and reliable aerodynamic data, and highly accurate determination of thermal and mechanical loads. Truly mul- disciplinary design and optimization methods regarding the layout of thermal protection systems, all kinds of aero-servoelasticity problems of the airframe, et cetera, begin now to emerge.
Author | : John David Anderson (Jr.) |
Publisher | : |
Total Pages | : 78 |
Release | : 1968 |
Genre | : Aerodynamics, Hypersonic |
ISBN | : |
New results are presented for inviscid, supersonic and hypersonic blunt-body flow fields obtained with a numerical time-dependent method patterned after that of Moretti and Abbett. In addition, important comments are made with regard to the physical and numerical nature of the method. Specifically, numerical results are presented for two-dimensional and axisymmetric parabolic and cubic blunt bodies as well as blunted wedges and cones; these results are presented for zero degrees angle of attack and for a calorically perfect gas with gamma = 1.4. The numerical results are compared with other existing theoretical and experimental data. Also, the effects of initial conditions and boundary conditions are systematically examined with regard to the convergence of the time-dependent numerical solutions, and the point is made that the initial conditions can not be completely arbitrary. Finally, in order to learn more about the performance of the time-dependent method, a numerical experiment is conducted to examine the unsteady propagation and region of influence of a slight pressure disturbance introduced at a point on the surface of a blunt body.
Author | : John H. S. Lee |
Publisher | : Cambridge University Press |
Total Pages | : 217 |
Release | : 2016-07-21 |
Genre | : Science |
ISBN | : 1107106303 |
Presents the fundamentals of gas dynamics for graduate students and researchers in the subject.