How to Design Optimization Algorithms by Applying Natural Behavioral Patterns

How to Design Optimization Algorithms by Applying Natural Behavioral Patterns
Author: Rohollah Omidvar
Publisher: Bentham Science Publishers
Total Pages: 209
Release: 2021-09-28
Genre: Computers
ISBN: 9811459576

How to Design Optimization Algorithms by Applying Natural Behavioral Patterns is a guide book that introduces readers to optimization algorithms based on natural language processing. Readers will learn about the basic concept of optimization, optimization algorithm fundamentals and the methods employed to formulate natural ideas and behaviors into algorithms. Readers will learn how to create their own algorithm from the information provided in the text. The book is a simple reference to students and programming enthusiasts who are interested in learning about optimization and the process of designing algorithms designed to mimic natural phenomena.

Algorithms for Optimization

Algorithms for Optimization
Author: Mykel J. Kochenderfer
Publisher: MIT Press
Total Pages: 521
Release: 2019-03-12
Genre: Computers
ISBN: 0262039427

A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.

Teaching Learning Based Optimization Algorithm

Teaching Learning Based Optimization Algorithm
Author: R. Venkata Rao
Publisher: Springer
Total Pages: 291
Release: 2015-11-14
Genre: Technology & Engineering
ISBN: 3319227327

Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.

Engineering Design Optimization

Engineering Design Optimization
Author: Joaquim R. R. A. Martins
Publisher: Cambridge University Press
Total Pages: 653
Release: 2021-11-18
Genre: Mathematics
ISBN: 110898861X

Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 400 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice. Accompanied online by a solutions manual for instructors and source code for problems, this is ideal for a one- or two-semester graduate course on optimization in aerospace, civil, mechanical, electrical, and chemical engineering departments.

Swarm Intelligence and Bio-Inspired Computation

Swarm Intelligence and Bio-Inspired Computation
Author: Xin-She Yang
Publisher: Newnes
Total Pages: 445
Release: 2013-05-16
Genre: Computers
ISBN: 0124051774

Swarm Intelligence and bio-inspired computation have become increasing popular in the last two decades. Bio-inspired algorithms such as ant colony algorithms, bat algorithms, bee algorithms, firefly algorithms, cuckoo search and particle swarm optimization have been applied in almost every area of science and engineering with a dramatic increase of number of relevant publications. This book reviews the latest developments in swarm intelligence and bio-inspired computation from both the theory and application side, providing a complete resource that analyzes and discusses the latest and future trends in research directions. It can help new researchers to carry out timely research and inspire readers to develop new algorithms. With its impressive breadth and depth, this book will be useful for advanced undergraduate students, PhD students and lecturers in computer science, engineering and science as well as researchers and engineers. - Focuses on the introduction and analysis of key algorithms - Includes case studies for real-world applications - Contains a balance of theory and applications, so readers who are interested in either algorithm or applications will all benefit from this timely book.

Bio-Inspired Intelligence for Smart Decision-Making

Bio-Inspired Intelligence for Smart Decision-Making
Author: Jaganathan, Ramkumar
Publisher: IGI Global
Total Pages: 355
Release: 2024-05-14
Genre: Business & Economics
ISBN:

In today's complex and fast-paced world, decision-making is critical to problem-solving across industries and academia. However, traditional optimization techniques often need help to cope with the challenges posed by dynamic and intricate environments. This limitation hampers decision-makers' ability to tackle complex problems and seize opportunities effectively. As such, there is a pressing need for innovative approaches that can enhance decision-making processes, enabling individuals and organizations to navigate uncertainty and achieve optimal outcomes. Bio-Inspired Intelligence for Smart Decision-Making offers a compelling solution to this challenge. By exploring the intersection of bio-inspired optimization techniques and decision-making, this book presents a fresh perspective that can revolutionize decisions. The book introduces readers to powerful bio-inspired algorithms such as genetic algorithms, swarm intelligence, and evolutionary strategies through a multidisciplinary lens that encompasses computer science, artificial intelligence, optimization, and decision science. These algorithms mimic natural systems' efficiency and adaptability, offering a robust framework for researchers, graduate students, and professionals who are addressing complex decision-making problems in diverse fields.

Intelligent Systems Design and Applications

Intelligent Systems Design and Applications
Author: Ajith Abraham
Publisher: Springer
Total Pages: 1076
Release: 2018-03-21
Genre: Technology & Engineering
ISBN: 3319763482

This book highlights recent research on intelligent systems design and applications. It presents 100 selected papers from the 17th International Conference on Intelligent Systems Design and Applications (ISDA 2017), which was held in Delhi, India from December 14 to 16, 2017. The ISDA is a premier conference in the field of Computational Intelligence and brings together researchers, engineers and practitioners whose work involves intelligent systems and their applications in industry and the real world. Including contributions by authors from over 30 countries, the book offers a valuable reference guide for all researchers, students and practitioners in the fields of Computer Science and Engineering.

Data Analytics Applied to the Mining Industry

Data Analytics Applied to the Mining Industry
Author: Ali Soofastaei
Publisher: CRC Press
Total Pages: 273
Release: 2020-11-12
Genre: Computers
ISBN: 0429781776

Data Analytics Applied to the Mining Industry describes the key challenges facing the mining sector as it transforms into a digital industry able to fully exploit process automation, remote operation centers, autonomous equipment and the opportunities offered by the industrial internet of things. It provides guidelines on how data needs to be collected, stored and managed to enable the different advanced data analytics methods to be applied effectively in practice, through use of case studies, and worked examples. Aimed at graduate students, researchers, and professionals in the industry of mining engineering, this book: Explains how to implement advanced data analytics through case studies and examples in mining engineering Provides approaches and methods to improve data-driven decision making Explains a concise overview of the state of the art for Mining Executives and Managers Highlights and describes critical opportunity areas for mining optimization Brings experience and learning in digital transformation from adjacent sectors

Group Search Optimization for Applications in Structural Design

Group Search Optimization for Applications in Structural Design
Author: Lijuan Li
Publisher: Springer Science & Business Media
Total Pages: 257
Release: 2011-05-27
Genre: Technology & Engineering
ISBN: 3642205364

Civil engineering structures such as buildings, bridges, stadiums, and offshore structures play an import role in our daily life. However, constructing these structures requires lots of budget. Thus, how to cost-efficiently design structures satisfying all required design constraints is an important factor to structural engineers. Traditionally, mathematical gradient-based optimal techniques have been applied to the design of optimal structures. While, many practical engineering optimal problems are very complex and hard to solve by traditional method. In the past few decades, swarm intelligence algorithms, which were inspired by the social behaviour of natural animals such as fish schooling and bird flocking, were developed because they do not require conventional mathematical assumptions and thus possess better global search abilities than the traditional optimization algorithms and have attracted more and more attention. These intelligent based algorithms are very suitable for continuous and discrete design variable problems such as ready-made structural members and have been vigorously applied to various structural design problems and obtained good results. This book gathers the authors’ latest research work related with particle swarm optimizer algorithm and group search optimizer algorithm as well as their application to structural optimal design. The readers can understand the full spectrum of the algorithms and apply the algorithms to their own research problems.

Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications

Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications
Author: Management Association, Information Resources
Publisher: IGI Global
Total Pages: 1810
Release: 2016-07-26
Genre: Computers
ISBN: 1522507892

As technology continues to become more sophisticated, mimicking natural processes and phenomena also becomes more of a reality. Continued research in the field of natural computing enables an understanding of the world around us, in addition to opportunities for man-made computing to mirror the natural processes and systems that have existed for centuries. Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications takes an interdisciplinary approach to the topic of natural computing, including emerging technologies being developed for the purpose of simulating natural phenomena, applications across industries, and the future outlook of biologically and nature-inspired technologies. Emphasizing critical research in a comprehensive multi-volume set, this publication is designed for use by IT professionals, researchers, and graduate students studying intelligent computing.