The Optimal Homotopy Asymptotic Method

The Optimal Homotopy Asymptotic Method
Author: Vasile Marinca
Publisher: Springer
Total Pages: 476
Release: 2015-04-02
Genre: Technology & Engineering
ISBN: 3319153749

This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011 and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five applications are presented from fluid mechanics and nonlinear oscillations. The Chapter 4 presents the Optimal Homotopy Asymptotic Method with a single iteration and solving the linear equation on the first approximation. Here are treated 32 models from different fields of engineering such as fluid mechanics, thermodynamics, nonlinear damped and undamped oscillations, electrical machines and even from physics and biology. The last chapter is devoted to the Optimal Homotopy Asymptotic Method with a single iteration but without solving the equation in the first approximation.

Homotopy Analysis Method in Nonlinear Differential Equations

Homotopy Analysis Method in Nonlinear Differential Equations
Author: Shijun Liao
Publisher: Springer Science & Business Media
Total Pages: 566
Release: 2012-06-22
Genre: Mathematics
ISBN: 3642251323

"Homotopy Analysis Method in Nonlinear Differential Equations" presents the latest developments and applications of the analytic approximation method for highly nonlinear problems, namely the homotopy analysis method (HAM). Unlike perturbation methods, the HAM has nothing to do with small/large physical parameters. In addition, it provides great freedom to choose the equation-type of linear sub-problems and the base functions of a solution. Above all, it provides a convenient way to guarantee the convergence of a solution. This book consists of three parts. Part I provides its basic ideas and theoretical development. Part II presents the HAM-based Mathematica package BVPh 1.0 for nonlinear boundary-value problems and its applications. Part III shows the validity of the HAM for nonlinear PDEs, such as the American put option and resonance criterion of nonlinear travelling waves. New solutions to a number of nonlinear problems are presented, illustrating the originality of the HAM. Mathematica codes are freely available online to make it easy for readers to understand and use the HAM. This book is suitable for researchers and postgraduates in applied mathematics, physics, nonlinear mechanics, finance and engineering. Dr. Shijun Liao, a distinguished professor of Shanghai Jiao Tong University, is a pioneer of the HAM.

Advances In The Homotopy Analysis Method

Advances In The Homotopy Analysis Method
Author: Shijun Liao
Publisher: World Scientific
Total Pages: 426
Release: 2013-11-26
Genre: Mathematics
ISBN: 9814551260

Unlike other analytic techniques, the Homotopy Analysis Method (HAM) is independent of small/large physical parameters. Besides, it provides great freedom to choose equation type and solution expression of related linear high-order approximation equations. The HAM provides a simple way to guarantee the convergence of solution series. Such uniqueness differentiates the HAM from all other analytic approximation methods. In addition, the HAM can be applied to solve some challenging problems with high nonlinearity.This book, edited by the pioneer and founder of the HAM, describes the current advances of this powerful analytic approximation method for highly nonlinear problems. Coming from different countries and fields of research, the authors of each chapter are top experts in the HAM and its applications.

Beyond Perturbation

Beyond Perturbation
Author: Shijun Liao
Publisher: CRC Press
Total Pages: 335
Release: 2003-10-27
Genre: Mathematics
ISBN: 1135438293

Solving nonlinear problems is inherently difficult, and the stronger the nonlinearity, the more intractable solutions become. Analytic approximations often break down as nonlinearity becomes strong, and even perturbation approximations are valid only for problems with weak nonlinearity. This book introduces a powerful new analytic method for nonlinear problems-homotopy analysis-that remains valid even with strong nonlinearity. In Part I, the author starts with a very simple example, then presents the basic ideas, detailed procedures, and the advantages (and limitations) of homotopy analysis. Part II illustrates the application of homotopy analysis to many interesting nonlinear problems. These range from simple bifurcations of a nonlinear boundary-value problem to the Thomas-Fermi atom model, Volterra's population model, Von Karman swirling viscous flow, and nonlinear progressive waves in deep water. Although the homotopy analysis method has been verified in a number of prestigious journals, it has yet to be fully detailed in book form. Written by a pioneer in its development, Beyond Pertubation: Introduction to the Homotopy Analysis Method is your first opportunity to explore the details of this valuable new approach, add it to your analytic toolbox, and perhaps make contributions to some of the questions that remain open.

Wavelet Methods for Solving Partial Differential Equations and Fractional Differential Equations

Wavelet Methods for Solving Partial Differential Equations and Fractional Differential Equations
Author: Santanu Saha Ray
Publisher: CRC Press
Total Pages: 251
Release: 2018-01-12
Genre: Mathematics
ISBN: 1351682210

The main focus of the book is to implement wavelet based transform methods for solving problems of fractional order partial differential equations arising in modelling real physical phenomena. It explores analytical and numerical approximate solution obtained by wavelet methods for both classical and fractional order partial differential equations.

Recent Studies inPerturbation Theory

Recent Studies inPerturbation Theory
Author: Dimo Uzunov
Publisher: BoD – Books on Demand
Total Pages: 202
Release: 2017-06-14
Genre: Technology & Engineering
ISBN: 953513261X

The book contains seven chapters written by noted experts and young researchers who present their recent studies of both pure mathematical problems of perturbation theories and application of perturbation methods to the study of the important topic in physics, for example, renormalization group theory and applications to basic models in theoretical physics (Y. Takashi), the quantum gravity and its detection and measurement (F. Bulnes), atom-photon interactions (E. G. Thrapsaniotis), treatment of spectra and radiation characteristics by relativistic perturbation theory (A. V. Glushkov et al), and Green's function theory and some applications (Jing Huang). The pure mathematical issues are related to the problem of generalization of the boundary layer function method for bisingularly perturbed differential equations (K. Alymkulov and D. A. Torsunov) and to the development of new homotopy asymptotic methods and some of their applications (Baojian Hong).

Fractional Derivatives with Mittag-Leffler Kernel

Fractional Derivatives with Mittag-Leffler Kernel
Author: José Francisco Gómez
Publisher: Springer
Total Pages: 339
Release: 2019-02-13
Genre: Technology & Engineering
ISBN: 303011662X

This book offers a timely overview of fractional calculus applications, with a special emphasis on fractional derivatives with Mittag-Leffler kernel. The different contributions, written by applied mathematicians, physicists and engineers, offers a snapshot of recent research in the field, highlighting the current methodological frameworks together with applications in different fields of science and engineering, such as chemistry, mechanics, epidemiology and more. It is intended as a timely guide and source of inspiration for graduate students and researchers in the above-mentioned areas.

Fractional Calculus: New Applications in Understanding Nonlinear Phenomena

Fractional Calculus: New Applications in Understanding Nonlinear Phenomena
Author: Mehmet Yavuz
Publisher: Bentham Science Publishers
Total Pages: 275
Release: 2022-12-14
Genre: Mathematics
ISBN: 9815051946

In the last two decades, many new fractional operators have appeared, often defined using integrals with special functions in the kernel as well as their extended or multivariable forms. Modern operators in fractional calculus have different properties which are comparable to those of classical operators.These have been intensively studied formodelling and analysing real-world phenomena. There is now a growing body of research on new methods to understand natural occurrences and tackle different problems. This book presents ten reviews of recent fractional operators split over three sections: 1. Chaotic Systems and Control (covers the Caputo fractional derivative, and a chaotic fractional-order financial system)2. Heat Conduction (covers the Duhamel theorem for time-dependent source terms, and the Cattaneo–Hristov model for oscillatory heat transfer)3. Computational Methods and Their Illustrative Applications (covers mathematical analysis for understanding 5 real-word phenomena: HTLV-1 infection of CD4+ T-cells, traveling waves, rumor-spreading, biochemical reactions, and the computational fluid dynamics of a non-powered floating object navigating in an approach channel) This volume is a resource for researchers in physics, biology, behavioral sciences, and mathematics who are interested in new applications of fractional calculus in the study of nonlinear phenomena.

Issues in Logic, Operations, and Computational Mathematics and Geometry: 2011 Edition

Issues in Logic, Operations, and Computational Mathematics and Geometry: 2011 Edition
Author:
Publisher: ScholarlyEditions
Total Pages: 1531
Release: 2012-01-09
Genre: Mathematics
ISBN: 1464964785

Issues in Logic, Operations, and Computational Mathematics and Geometry: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Logic, Operations, and Computational Mathematics and Geometry. The editors have built Issues in Logic, Operations, and Computational Mathematics and Geometry: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Logic, Operations, and Computational Mathematics and Geometry in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Logic, Operations, and Computational Mathematics and Geometry: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.