Hodge Theory and Complex Algebraic Geometry I:

Hodge Theory and Complex Algebraic Geometry I:
Author: Claire Voisin
Publisher: Cambridge University Press
Total Pages: 334
Release: 2007-12-20
Genre: Mathematics
ISBN: 9780521718011

This is a modern introduction to Kaehlerian geometry and Hodge structure. Coverage begins with variables, complex manifolds, holomorphic vector bundles, sheaves and cohomology theory (with the latter being treated in a more theoretical way than is usual in geometry). The book culminates with the Hodge decomposition theorem. In between, the author proves the Kaehler identities, which leads to the hard Lefschetz theorem and the Hodge index theorem. The second part of the book investigates the meaning of these results in several directions.

Hodge Theory and Complex Algebraic Geometry I: Volume 1

Hodge Theory and Complex Algebraic Geometry I: Volume 1
Author: Claire Voisin
Publisher: Cambridge University Press
Total Pages: 336
Release: 2002-12-05
Genre: Mathematics
ISBN: 1139437690

The first of two volumes offering a modern introduction to Kaehlerian geometry and Hodge structure. The book starts with basic material on complex variables, complex manifolds, holomorphic vector bundles, sheaves and cohomology theory, the latter being treated in a more theoretical way than is usual in geometry. The author then proves the Kaehler identities, which leads to the hard Lefschetz theorem and the Hodge index theorem. The book culminates with the Hodge decomposition theorem. The meanings of these results are investigated in several directions. Completely self-contained, the book is ideal for students, while its content gives an account of Hodge theory and complex algebraic geometry as has been developed by P. Griffiths and his school, by P. Deligne, and by S. Bloch. The text is complemented by exercises which provide useful results in complex algebraic geometry.

Algebraic Geometry over the Complex Numbers

Algebraic Geometry over the Complex Numbers
Author: Donu Arapura
Publisher: Springer Science & Business Media
Total Pages: 326
Release: 2012-02-15
Genre: Mathematics
ISBN: 1461418097

This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.

Hodge Theory and Complex Algebraic Geometry II:

Hodge Theory and Complex Algebraic Geometry II:
Author: Claire Voisin
Publisher: Cambridge University Press
Total Pages: 362
Release: 2007-12-20
Genre: Mathematics
ISBN: 9780521718028

The second volume of this modern account of Kaehlerian geometry and Hodge theory starts with the topology of families of algebraic varieties. The main results are the generalized Noether-Lefschetz theorems, the generic triviality of the Abel-Jacobi maps, and most importantly, Nori's connectivity theorem, which generalizes the above. The last part deals with the relationships between Hodge theory and algebraic cycles. The text is complemented by exercises offering useful results in complex algebraic geometry. Also available: Volume I 0-521-80260-1 Hardback $60.00 C

Complex Geometry

Complex Geometry
Author: Daniel Huybrechts
Publisher: Springer Science & Business Media
Total Pages: 336
Release: 2005
Genre: Computers
ISBN: 9783540212904

Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)

Complex Algebraic Surfaces

Complex Algebraic Surfaces
Author: Arnaud Beauville
Publisher: Cambridge University Press
Total Pages: 148
Release: 1996-06-28
Genre: Mathematics
ISBN: 9780521498425

Developed over more than a century, and still an active area of research today, the classification of algebraic surfaces is an intricate and fascinating branch of mathematics. In this book Professor BeauviIle gives a lucid and concise account of the subject, following the strategy of F. Enriques, but expressed simply in the language of modern topology and sheaf theory, so as to be accessible to any budding geometer. This volume is self contained and the exercises succeed both in giving the flavour of the extraordinary wealth of examples in the classical subject, and in equipping the reader with most of the techniques needed for research.

Differential Analysis on Complex Manifolds

Differential Analysis on Complex Manifolds
Author: R. O. Wells
Publisher: Springer Science & Business Media
Total Pages: 269
Release: 2013-04-17
Genre: Mathematics
ISBN: 147573946X

In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Subsequent chapters then develop such topics as Hermitian exterior algebra and the Hodge *-operator, harmonic theory on compact manifolds, differential operators on a Kahler manifold, the Hodge decomposition theorem on compact Kahler manifolds, the Hodge-Riemann bilinear relations on Kahler manifolds, Griffiths's period mapping, quadratic transformations, and Kodaira's vanishing and embedding theorems. The third edition of this standard reference contains a new appendix by Oscar Garcia-Prada which gives an overview of certain developments in the field during the decades since the book first appeared. From reviews of the 2nd Edition: "..the new edition of Professor Wells' book is timely and welcome...an excellent introduction for any mathematician who suspects that complex manifold techniques may be relevant to his work." - Nigel Hitchin, Bulletin of the London Mathematical Society "Its purpose is to present the basics of analysis and geometry on compact complex manifolds, and is already one of the standard sources for this material." - Daniel M. Burns, Jr., Mathematical Reviews

Mixed Hodge Structures

Mixed Hodge Structures
Author: Chris A.M. Peters
Publisher: Springer Science & Business Media
Total Pages: 467
Release: 2008-02-27
Genre: Mathematics
ISBN: 3540770178

This is comprehensive basic monograph on mixed Hodge structures. Building up from basic Hodge theory the book explains Delingne's mixed Hodge theory in a detailed fashion. Then both Hain's and Morgan's approaches to mixed Hodge theory related to homotopy theory are sketched. Next comes the relative theory, and then the all encompassing theory of mixed Hodge modules. The book is interlaced with chapters containing applications. Three large appendices complete the book.

Recent Advances in Hodge Theory

Recent Advances in Hodge Theory
Author: Matt Kerr
Publisher: Cambridge University Press
Total Pages: 533
Release: 2016-02-04
Genre: Mathematics
ISBN: 110754629X

Combines cutting-edge research and expository articles in Hodge theory. An essential reference for graduate students and researchers.

Several Complex Variables with Connections to Algebraic Geometry and Lie Groups

Several Complex Variables with Connections to Algebraic Geometry and Lie Groups
Author: Joseph L. Taylor
Publisher: American Mathematical Soc.
Total Pages: 530
Release: 2002
Genre: Mathematics
ISBN: 082183178X

This text presents an integrated development of core material from several complex variables and complex algebraic geometry, leading to proofs of Serre's celebrated GAGA theorems relating the two subjects, and including applications to the representation theory of complex semisimple Lie groups. It includes a thorough treatment of the local theory using the tools of commutative algebra, an extensive development of sheaf theory and the theory of coherent analytic and algebraicsheaves, proofs of the main vanishing theorems for these categories of sheaves, and a complete proof of the finite dimensionality of the cohomology of coherent sheaves on compact varieties. The vanishing theorems have a wide variety of applications and these are covered in detail. Of particular interest arethe last three chapters, which are devoted to applications of the preceding material to the study of the structure theory and representation theory of complex semisimple Lie groups. Included are introductions to harmonic analysis, the Peter-Weyl theorem, Lie theory and the structure of Lie algebras, semisimple Lie algebras and their representations, algebraic groups and the structure of complex semisimple Lie groups. All of this culminates in Milicic's proof of the Borel-Weil-Bott theorem,which makes extensive use of the material developed earlier in the text. There are numerous examples and exercises in each chapter. This modern treatment of a classic point of view would be an excellent text for a graduate course on several complex variables, as well as a useful reference for theexpert.