High Temperature Semiconductors For Thermoelectric Conversion
Download High Temperature Semiconductors For Thermoelectric Conversion full books in PDF, epub, and Kindle. Read online free High Temperature Semiconductors For Thermoelectric Conversion ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
High Temperature Materials and Mechanisms
Author | : Yoseph Bar-Cohen |
Publisher | : CRC Press |
Total Pages | : 586 |
Release | : 2014-03-03 |
Genre | : Science |
ISBN | : 1466566450 |
The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the application of high temperature materials to actuators and sensors, sensor design challenges, as well as various high temperature materials and mechanisms applications and challenges. Utilizing the knowledge of experts in the field, the book considers the multidisciplinary nature of high temperature materials and mechanisms, and covers technology related to several areas including energy, space, aerospace, electronics, and metallurgy. Supplies extensive references at the end of each chapter to enhance further study Addresses related science and engineering disciplines Includes information on drills, actuators, sensors and more A comprehensive resource of information consolidated in one book, this text greatly benefits students in materials science, aerospace and mechanical engineering, and physics. It is also an ideal resource for professionals in the industry.
Energy Conversion for Space Power
Author | : Nathan Snyder |
Publisher | : Elsevier |
Total Pages | : 798 |
Release | : 2012-12-02 |
Genre | : Technology & Engineering |
ISBN | : 0323142486 |
Progress in Astronautics and Rocketry, Volume 3: Energy Conversion for Space Power focuses on the use of dependable electric power sources on space vehicles. Composed of various literature, the book first discusses the physics of thermoelectricity, thermoelectric generator of materials, the use of semiconductors in thermoelectric conversion, and the use of high temperature thermoelectric materials for power generation. The text also presents experiments on the effect of irradiation on thermoelectric materials, thermoelectric elements in space power systems, and thermionics. The book then describes photovoltaic effect and conversion of solar energy; trends in silicon solar cell technology; the use of silicon solar cells in energy conversion; and how radiation affects solar cell power systems. The text notes the specifications of batteries if used in communications satellites; the use of positive-displacement engines and turbines on cryogenic power systems; and the characteristics of magnetohydrodynamic (MHD) generators in space power conversion. The book is a good source of information for readers and scientists wanting to explore the potential of energy conversion in space power technology.
CRC Handbook of Thermoelectrics
Author | : D.M. Rowe |
Publisher | : CRC Press |
Total Pages | : 720 |
Release | : 2018-12-07 |
Genre | : Technology & Engineering |
ISBN | : 0429956673 |
Thermoelectrics is the science and technology associated with thermoelectric converters, that is, the generation of electrical power by the Seebeck effect and refrigeration by the Peltier effect. Thermoelectric generators are being used in increasing numbers to provide electrical power in medical, military, and deep space applications where combinations of their desirable properties outweigh their relatively high cost and low generating efficiency. In recent years there also has been an increase in the requirement for thermoelectric coolers (Peltier devices) for use in infrared detectors and in optical communications. Information on thermoelectrics is not readily available as it is widely scattered throughout the literature. The Handbook centralizes this information in a convenient format under a single cover. Sixty of the world's foremost authorities on thermoelectrics have contributed to this Handbook. It is comprised of fifty-five chapters, a number of which contain previously unpublished material. The contents are arranged in eight sections: general principles and theoretical considerations, material preparation, measurement of thermoelectric properties, thermoelectric materials, thermoelectric generation, generator applications, thermoelectric refrigeration, and applications of thermoelectric cooling. The CRC Handbook of Thermoelectrics has a broad-based scope. It will interest researchers, technologists, and manufacturers, as well as students and the well-informed, non-specialist reader.
Thermoelectrics Handbook
Author | : D.M. Rowe |
Publisher | : CRC Press |
Total Pages | : 1016 |
Release | : 2018-10-03 |
Genre | : Technology & Engineering |
ISBN | : 1420038907 |
Ten years ago, D.M. Rowe introduced the bestselling CRC Handbook of Thermoelectrics to wide acclaim. Since then, increasing environmental concerns, desire for long-life electrical power sources, and continued progress in miniaturization of electronics has led to a substantial increase in research activity involving thermoelectrics. Reflecting the latest trends and developments, the Thermoelectrics Handbook: Macro to Nano is an extension of the earlier work and covers the entire range of thermoelectrics disciplines. Serving as a convenient reference as well as a thorough introduction to thermoelectrics, this book includes contributions from 99 leading authorities from around the world. Its coverage spans from general principles and theoretical concepts to material preparation and measurements; thermoelectric materials; thermoelements, modules, and devices; and thermoelectric systems and applications. Reflecting the enormous impact of nanotechnology on the field-as the thermoelectric properties of nanostructured materials far surpass the performance of conventional materials-each section progresses systematically from macro-scale to micro/nano-scale topics. In addition, the book contains an appendix listing major manufacturers and suppliers of thermoelectric modules. There is no longer any need to spend hours plodding through the journal literature for information. The Thermoelectrics Handbook: Macro to Nano offers a timely, comprehensive treatment of all areas of thermoelectrics in a single, unified reference.
Thermoelectric Materials and Devices
Author | : Iris Nandhakumar |
Publisher | : Royal Society of Chemistry |
Total Pages | : 269 |
Release | : 2017 |
Genre | : Science |
ISBN | : 178262323X |
Authoritative account of recent developments in thermoelectric materials and devices for power energy harvesting applications, ideal for researchers and industrialists in materials science.
Progress in the Science and Technology of the Rare Earths
Author | : Leroy Eyring |
Publisher | : Elsevier |
Total Pages | : 373 |
Release | : 2013-09-17 |
Genre | : Science |
ISBN | : 1483185877 |
Progress in the Science and Technology of the Rare Earths, Volume 2 is a collection of papers that details the advancement in various areas of rare earth technology. The coverage of the text includes the practical applications and methods of preparation of rare earth materials. The selection also covers topics about the various properties of rare earths, such as the molecular field model of exchange coupling in rare earth materials; thermodynamic and magnetic properties of the rare earth chalcogenides and pnictides; and structural and solid state chemistry of pure rare earth oxides. The book will be of great use to individuals involved in the research and development of technologies that utilize rare earth materials.
Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion
Author | : Alejandro Datas |
Publisher | : Woodhead Publishing |
Total Pages | : 370 |
Release | : 2020-09-01 |
Genre | : Science |
ISBN | : 0128204214 |
Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion presents a comprehensive analysis of thermal energy storage systems operating at beyond 800°C. Editor Dr. Alejandro Datas and his team of expert contributors from a variety of regions summarize the main technological options and the most relevant materials and characterization considerations to enable the reader to make the most effective and efficient decisions.This book helps the reader to solve the very specific challenges associated with working within an ultra-high temperature energy storage setting. It condenses and summarizes the latest knowledge, covering fundamentals, device design, materials selection and applications, as well as thermodynamic cycles and solid-state devices for ultra-high temperature energy conversion.This book provides a comprehensive and multidisciplinary guide to engineers and researchers in a variety of fields including energy conversion, storage, cogeneration, thermodynamics, numerical methods, CSP, and materials engineering. It firstly provides a review of fundamental concepts before exploring numerical methods for fluid-dynamics and phase change materials, before presenting more complex elements such as heat transfer fluids, thermal insulation, thermodynamic cycles, and a variety of energy conversation methods including thermophotovoltaic, thermionic, and combined heat and power. - Reviews the main technologies enabling ultra-high temperature energy storage and conversion, including both thermodynamic cycles and solid-state devices - Includes the applications for ultra-high temperature energy storage systems, both in terrestrial and space environments - Analyzes the thermophysical properties and relevant experimental and theoretical methods for the analysis of high-temperature materials