High-speed Optical Transceivers: Integrated Circuits Designs And Optical Devices Techniques

High-speed Optical Transceivers: Integrated Circuits Designs And Optical Devices Techniques
Author: Yuyu Liu
Publisher: World Scientific
Total Pages: 242
Release: 2006-03-09
Genre: Technology & Engineering
ISBN: 9814478709

This book explores the unique advantages and large inherent transmission capacity of optical fiber communication systems. The long-term and high-risk research challenges of optical transceivers are analyzed with a view to sustaining the seemingly insatiable demand for bandwidth. A broad coverage of topics relating to the design of high-speed optical devices and integrated circuits, oriented to low power, low cost, and small area, is discussed.Written by specialists with many years of research and engineering experience in the field of optical fiber communication, this book is essential for an audience dedicated to the development of integrated electronic systems for optical communication applications. It can also be used as a supplementary text for graduate courses on optical transceiver IC design.

High-Speed CMOS Circuits for Optical Receivers

High-Speed CMOS Circuits for Optical Receivers
Author: Jafar Savoj
Publisher: Springer Science & Business Media
Total Pages: 132
Release: 2007-05-08
Genre: Technology & Engineering
ISBN: 0306475766

With the exponential growth of the number of Internet nodes, the volume of the data transported on the backbone has increased with the same trend. The load of the global Internet backbone will soon increase to tens of terabits per second. This indicates that the backbone bandwidth requirements will increase by a factor of 50 to 100 every seven years. Transportation of such high volumes of data requires suitable media with low loss and high bandwidth. Among the available transmission media, optical fibers achieve the best performance in terms of loss and bandwidth. High-speed data can be transported over hundreds of kilometers of single-mode fiber without significant loss in signal integrity. These fibers progressively benefit from reduction of cost and improvement of perf- mance. Meanwhile, the electronic interfaces used in an optical network are not capable of exploiting the ultimate bandwidth of the fiber, limiting the throughput of the network. Different solutions at both the system and the circuit levels have been proposed to increase the data rate of the backbone. System-level solutions are based on the utilization of wave-division multiplexing (WDM), using different colors of light to transmit s- eral sequences simultaneously. In parallel with that, a great deal of effort has been put into increasing the operating rate of the electronic transceivers using highly-developed fabrication processes and novel c- cuit techniques.

High-Speed Devices and Circuits with THz Applications

High-Speed Devices and Circuits with THz Applications
Author: Jung Han Choi
Publisher: CRC Press
Total Pages: 261
Release: 2017-09-19
Genre: Science
ISBN: 1351831577

Presenting the cutting-edge results of new device developments and circuit implementations, High-Speed Devices and Circuits with THz Applications covers the recent advancements of nano devices for terahertz (THz) applications and the latest high-speed data rate connectivity technologies from system design to integrated circuit (IC) design, providing relevant standard activities and technical specifications. Featuring the contributions of leading experts from industry and academia, this pivotal work: Discusses THz sensing and imaging devices based on nano devices and materials Describes silicon on insulator (SOI) multigate nanowire field-effect transistors (FETs) Explains the theory underpinning nanoscale nanowire metal-oxide-semiconductor field-effect transistors (MOSFETs), simulation methods, and their results Explores the physics of the silicon-germanium (SiGe) heterojunction bipolar transistor (HBT), as well as commercially available SiGe HBT devices and their applications Details aspects of THz IC design using standard silicon (Si) complementary metal-oxide-semiconductor (CMOS) devices, including experimental setups for measurements, detection methods, and more An essential text for the future of high-frequency engineering, High-Speed Devices and Circuits with THz Applications offers valuable insight into emerging technologies and product possibilities that are attractive in terms of mass production and compatibility with current manufacturing facilities.

High Speed VCSELs for Optical Interconnects

High Speed VCSELs for Optical Interconnects
Author: Alex Mutig
Publisher: Springer Science & Business Media
Total Pages: 179
Release: 2011-01-12
Genre: Science
ISBN: 3642165702

The transmission speed of data communication systems is forecast to increase exponentially over the next decade. Development of both Si-based high-speed drivers as well as III-V-semiconductor-based high-speed vertical cavity surface emitting lasers (VCSELs) are prerequisites for future ultrahigh data-rate systems. This thesis presents: - a survey of the present state of the art of VCSELs - a systematic investigation of the various effects limiting present VCSELs - a catalogue of solutions to overcome present limits - detailed progress in modelling, fabricating and testing the currently most advanced VCSELs at the two commercially most important wavelengths.

High-Speed and Lower Power Technologies

High-Speed and Lower Power Technologies
Author: Jung Han Choi
Publisher: CRC Press
Total Pages: 328
Release: 2018-09-03
Genre: Technology & Engineering
ISBN: 135124227X

This book explores up-to-date research trends and achievements on low-power and high-speed technologies in both electronics and optics. It offers unique insight into low-power and high-speed approaches ranging from devices, ICs, sub-systems and networks that can be exploited for future mobile devices, 5G networks, Internet of Things (IoT), and data centers. It collects heterogeneous topics in place to catch and predict future research directions of devices, circuits, subsystems, and networks for low-power and higher-speed technologies. Even it handles about artificial intelligence (AI) showing examples how AI technology can be combined with concurrent electronics. Written by top international experts in both industry and academia, the book discusses new devices, such as Si-on-chip laser, interconnections using graphenes, machine learning combined with CMOS technology, progresses of SiGe devices for higher-speed electronices for optic, co-design low-power and high-speed circuits for optical interconnect, low-power network-on-chip (NoC) router, X-ray quantum counting, and a design of low-power power amplifiers. Covers modern high-speed and low-power electronics and photonics. Discusses novel nano-devices, electronics & photonic sub-systems for high-speed and low-power systems, and many other emerging technologies like Si photonic technology, Si-on-chip laser, low-power driver for optic device, and network-on-chip router. Includes practical applications and recent results with respect to emerging low-power systems. Addresses the future perspective of silicon photonics as a low-power interconnections and communication applications.

Fundamentals of Optical Networks and Components

Fundamentals of Optical Networks and Components
Author: Partha Pratim Sahu
Publisher: CRC Press
Total Pages: 421
Release: 2020-07-09
Genre: Computers
ISBN: 1000060632

This book is intended as an undergraduate/postgraduate level textbook for courses on high-speed optical networks as well as computer networks. Nine chapters cover the basic principles of the technology and different devices for optical networks, as well as processing of integrated waveguide devices of optical networks using different technologies. It provides students, researchers and practicing engineers with an expert guide to the fundamental concepts, issues and state-of-the-art developments in optical networks. It includes examples throughout all the chapters of the book to aid understanding of basic problems and solutions. Presents basics of the optical network devices and discusses latest developments Includes examples and exercises throughout all the chapters of the book to aid understanding of basic problems and solutions for undergraduate and postgraduate students Discusses different optical network node architectures and their components Includes basic theories and latest developments of hardware devices with their fabrication technologies (such as optical switch, wavelength router, wavelength division multiplexer/demultiplexer and add/drop multiplexer), helpful for researchers to initiate research on this field and to develop research problem-solving capability Reviews fiber-optic networks without WDM and single-hop and multi-hop WDM optical networks P. P. Sahu received his M.Tech. degree from the Indian Institute of Technology Delhi and his Ph.D. degree in engineering from Jadavpur University, India. In 1991, he joined Haryana State Electronics Development Corporation Limited, where he has been engaged in R&D works related to optical fiber components and telecommunication instruments. In 1996, he joined Northeastern Regional Institute of Science and Technology as a faculty member. At present, he is working as a professor in the Department of Electronics and Communication Engineering, Tezpur Central University, India. His field of interest is integrated optic and electronic circuits, wireless and optical communication, clinical instrumentation, green energy, etc. He has received an INSA teacher award (instituted by the highest academic body Indian National Science Academy) for high level of teaching and research. He has published more than 90 papers in peer-reviewed international journals, 60 papers in international conference, and has written five books published by Springer Nature, McGraw-Hill. Dr Sahu is a Fellow of the Optical Society of India, Life Member of Indian Society for Technical Education and Senior Member of the IEEE.

Silicon Photonics for High-Performance Computing and Beyond

Silicon Photonics for High-Performance Computing and Beyond
Author: Mahdi Nikdast
Publisher: CRC Press
Total Pages: 408
Release: 2021-11-17
Genre: Technology & Engineering
ISBN: 1000480119

Silicon photonics is beginning to play an important role in driving innovations in communication and computation for an increasing number of applications, from health care and biomedical sensors to autonomous driving, datacenter networking, and security. In recent years, there has been a significant amount of effort in industry and academia to innovate, design, develop, analyze, optimize, and fabricate systems employing silicon photonics, shaping the future of not only Datacom and telecom technology but also high-performance computing and emerging computing paradigms, such as optical computing and artificial intelligence. Different from existing books in this area, Silicon Photonics for High-Performance Computing and Beyond presents a comprehensive overview of the current state-of-the-art technology and research achievements in applying silicon photonics for communication and computation. It focuses on various design, development, and integration challenges, reviews the latest advances spanning materials, devices, circuits, systems, and applications. Technical topics discussed in the book include: • Requirements and the latest advances in high-performance computing systems • Device- and system-level challenges and latest improvements to deploy silicon photonics in computing systems • Novel design solutions and design automation techniques for silicon photonic integrated circuits • Novel materials, devices, and photonic integrated circuits on silicon • Emerging computing technologies and applications based on silicon photonics Silicon Photonics for High-Performance Computing and Beyond presents a compilation of 19 outstanding contributions from academic and industry pioneers in the field. The selected contributions present insightful discussions and innovative approaches to understand current and future bottlenecks in high-performance computing systems and traditional computing platforms, and the promise of silicon photonics to address those challenges. It is ideal for researchers and engineers working in the photonics, electrical, and computer engineering industries as well as academic researchers and graduate students (M.S. and Ph.D.) in computer science and engineering, electronic and electrical engineering, applied physics, photonics, and optics.