High-Pressure Physics

High-Pressure Physics
Author: John Loveday
Publisher: CRC Press
Total Pages: 344
Release: 2012-06-06
Genre: Science
ISBN: 1439814287

High-pressure science has undergone a revolution in the last 15 years. The development of intense new x-ray and neutron sources, improved detectors, new instrumentation, greatly increased computation power, and advanced computational algorithms have enabled researchers to determine the behavior of matter at static pressures in excess of 400 GPa. Shock-wave techniques have allowed access to the experimental pressure-temperature range beyond 1 TPa and 10,000 K. High-Pressure Physics introduces the current state of the art in this field. Based on lectures presented by leading researchers at the 63rd Scottish Universities Summer School in Physics, the book summarizes the latest experimental and theoretical techniques. Highlighting applications in a range of physics disciplines—from novel materials synthesis to planetary interiors—this book cuts across many areas and supplies a solid grounding in high-pressure physics. Chapters cover a wide array of topics and techniques, including: High-pressure devices The design of pressure cells Electrical transport experiments The fabrication process for customizing diamond anvils Equations of state (EOS) for solids in a range of pressures and temperatures Crystallography, optical spectroscopy, and inelastic x-ray scattering (IXS) techniques Magnetism in solids The internal structure of Earth and other planets Measurement and control of temperature in high-pressure experiments Solid state chemistry and materials research at high pressure Liquids and glasses The study of hydrogen at high density A resource for graduate students and young researchers, this accessible reference provides an overview of key research areas and applications in high-pressure physics.

Electronic Transitions and the High Pressure Chemistry and Physics of Solids

Electronic Transitions and the High Pressure Chemistry and Physics of Solids
Author: H.G. Drickamer
Publisher: Springer Science & Business Media
Total Pages: 227
Release: 2013-03-13
Genre: Science
ISBN: 9401168962

There is no paucity of books on high pressure. Beginning with P. W. Bridgman's The Physics of High Pressure, books of general interest include the two-volume Physics and Chemistry of High Pressure, edited by R. S. Bradley, and the series, Advances in High Pressure Research, as well as the report on the Lake George Conference in 1960. Solid state physics is well represented by Solids Under Pressure, edited by Paul and Warschauer, by Physics of Solids at High Pressure, edited by Tomizuka and Emrick, and by Properties Physiques des Solides sous Pression, edited by Bloch, as well as by chapters in Volumes 6, 13, 17, and 19 of Solid State Physics, edited by Seitz, Turnbull, and Ehrenreich. Chemistry in gases and liquids is covered in Weale's Chemical Reactions at High Pressure, and Hamann's Physico-chemical Effects of Pressure. In addition to the coverage of techniques and calibrations in the above volumes, Modern Very High Pressure Techniques, edited by Wentorf, High Pressure Methods in Solid State Research, by C. C. Bradley, The Accurate Characterization of the High Pressure Environment, edited by E. C. Lloyd, and a chapter in Volume 11 of Solid State Physics are devoted entirely to this facet of high pressure research. It is not our plan either to supersede or extend these approaches. It is our purpose here to discuss the effect of high pressure on the electronic properties of solids.

Solids Under High-Pressure Shock Compression

Solids Under High-Pressure Shock Compression
Author: R.A. Graham
Publisher: Springer Science & Business Media
Total Pages: 224
Release: 2012-12-06
Genre: Science
ISBN: 1461392780

Since the 1950s shock compression research contributed greatly to scientific knowledge and industrial technology. As a result, for example, our understanding of meteorite impacts has substantially improved, and shock processes have become standard industrial methods in materials synthesis and processing. Investigations of shock-compressed matter involve physics,electrical engineering, solid mechanics, metallurgy, geophysics and materials science. The description of shock-compressed matter presented here, which is derived from physical and chemical observations, differs significantly from the classical descriptions derived from strictly mechanical characteristics. This volume, with over 900 references, provides an introduction for scientists and engineers interested in the present state of shock compression science.

An Introduction to High-Pressure Science and Technology

An Introduction to High-Pressure Science and Technology
Author: Jose Manuel Recio
Publisher: CRC Press
Total Pages: 514
Release: 2016-01-05
Genre: Science
ISBN: 1498736238

An Introduction to High-Pressure Science and Technology provides you with an understanding of the connections between the different areas involved in the multidisciplinary science of high pressure. The book reflects the deep interdisciplinary nature of the field and its close relationship with industrial applications.Thirty-nine specialists in high

Equations of State for Solids at High Pressures and Temperatures

Equations of State for Solids at High Pressures and Temperatures
Author: V. N. Zharkov
Publisher: Springer Science & Business Media
Total Pages: 265
Release: 2013-11-09
Genre: Science
ISBN: 147571517X

We started our work on theoretical methods in the phys ics of high pressures (in connec tion with geophysical applications) in 1956, and we immediately encountered many problems. Naturally, we searched the published Iiterature for solutions to these problems but whenever we failed to find a solution or when the solution did not satisfy us, we attempted to solve the problern ourselves. We realized that other investigators working in the physics of high pres sures would probably encounter the same problems and doubts. Therefore, we decided to write this book in order to save our colleagues time and effort. Apart from the descriptions of ex perimental methods, the book deals only with those problems which we encountered in our own work. Allproblems in high-pressure physics have, at present, only approximate solutions, which are very rough. Therefore, it is not surprising that different investigators approach the same problems in different ways. Our approach does not prejudge the issue and we are fully aware that there are other points of view. Our aim was always to solve a glven problern on a physical basis. For example, the concept of the Grüneisenparameter needs further develop ment but it is based on reliable physical ideas. On the other hand, Simon's equation for the melting curve has, in our opinion, no clear physical basis and is purely empirical. Equations of this type are useful in systematic presentation of the experimental material but they are un suitable for any major extrapolation.

Frontiers of High Pressure Research

Frontiers of High Pressure Research
Author: Hans D. Hochheimer
Publisher: Springer Science & Business Media
Total Pages: 514
Release: 1991
Genre: Science
ISBN: 9780306441882

Proceedings of a NATO ARW held in Fort Collins, Colorado, July 15-18, 1991

High Pressure Geochemistry & Mineral Physics

High Pressure Geochemistry & Mineral Physics
Author: S. Mitra
Publisher: Elsevier
Total Pages: 1271
Release: 2004-12-11
Genre: Science
ISBN: 008045822X

Significant achievements have been made at the cross-roads of physics and planetary science. In the second half of the twentieth century, the discipline of planetary sciences has witnessed three major episodes which have revolutionized its approach and content: (i) the plate-tectonic theory, (ii) human landing and discoveries in planetary astronomy and (iii) the extraordinary technical advancement in high P-T studies, which have been abetted by a vast improvement in computational methods. Using these new computational methods, such as first principles including ab initio models, calculations have been made for the electronic structure, bonding, thermal EOS, elasticity, melting, thermal conductivity and diffusivity. In this monograph, the boundaries of the definitions of a petrologist, geochemist, geophysicist or a mineralogist have been willfully eliminated to bring them all under the spectrum of "high-pressure geochemistry" when they deal with any material (quintessentially a chemical assemblage) - terrestrial or extraterrestrial - under the conditions of high-pressure and temperature. Thus, a petrologist using a spectrometer or any instrument for high-pressure studies of a rock or a mineral, or a geochemist using them for chemical synthesis and characterization, is better categorized as a "high-pressure geochemist" rather than any other kind of disciplinarian.The contents of this monograph bring together, under one cover, apparently disparate disciplines like solid-earth geophysics and geochemistry as well as material science and condensed-matter physics to present a thorough overview of high pressure geochemistry. Indeed, such interdisciplinary activities led to the discovery of new phenomena such as high P-T behaviour in metal oxides (e.g. Mott transition), novel transitions such as amorphization, changes in order-disorder in crystals and the anomalous properties of oxide melts.

High-Energy-Density Physics

High-Energy-Density Physics
Author: R Paul Drake
Publisher: Springer
Total Pages: 671
Release: 2018-01-02
Genre: Science
ISBN: 331967711X

The raw numbers of high-energy-density physics are amazing: shock waves at hundreds of km/s (approaching a million km per hour), temperatures of millions of degrees, and pressures that exceed 100 million atmospheres. This title surveys the production of high-energy-density conditions, the fundamental plasma and hydrodynamic models that can describe them and the problem of scaling from the laboratory to the cosmos. Connections to astrophysics are discussed throughout. The book is intended to support coursework in high-energy-density physics, to meet the needs of new researchers in this field, and also to serve as a useful reference on the fundamentals. Specifically the book has been designed to enable academics in physics, astrophysics, applied physics and engineering departments to provide in a single-course, an introduction to fluid mechanics and radiative transfer, with dramatic applications in the field of high-energy-density systems. This second edition includes pedagogic improvements to the presentation throughout and additional material on equations of state, heat waves, and ionization fronts, as well as problem sets accompanied by solutions.

High Pressure in Semiconductor Physics II

High Pressure in Semiconductor Physics II
Author:
Publisher: Academic Press
Total Pages: 461
Release: 1998-08-06
Genre: Science
ISBN: 9780127521633

Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tradition will be maintained and even expanded. Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry. Volumes 54 and 55 present contributions by leading researchers in the field of high pressure semiconductors. Edited by T. Suski and W. Paul, these volumes continue the tradition of well-known but outdated publications such as Brigman's The Physics of High Pressure (1931 and 1949) and High Pressure Physics and Chemistry edited by Bradley. Volumes 54 and 55 reflect the industrially important recent developments in research and applications of semiconductor properties and behavior under desirable risk-free conditions at high pressures. These developments include the advent of the diamond anvil cell technique and the availability of commercial piston–cylinder apparatus operating at high hydrostatic pressures. These much-needed books will be useful to both researchers and practitioners in applied physics, materials science, and engineering.