High-Pressure Fluid Phase Equilibria

High-Pressure Fluid Phase Equilibria
Author: Ulrich K Deiters
Publisher: Elsevier
Total Pages: 363
Release: 2012-04-26
Genre: Technology & Engineering
ISBN: 0444563547

The book begins with an overview of the phase diagrams of fluid mixtures (fluid = liquid, gas, or supercritical state), which can show an astonishing variety when elevated pressures are taken into account; phenomena like retrograde condensation (single and double) and azeotropy (normal and double) are discussed. It then gives an introduction into the relevant thermodynamic equations for fluid mixtures, including some that are rarely found in modern textbooks, and shows how they can they be used to compute phase diagrams and related properties. This chapter gives a consistent and axiomatic approach to fluid thermodynamics; it avoids using activity coefficients. Further chapters are dedicated to solid-fluid phase equilibria and global phase diagrams (systematic search for phase diagram classes). The appendix contains numerical algorithms needed for the computations. The book thus enables the reader to create or improve computer programs for the calculation of fluid phase diagrams. - introduces phase diagram classes, how to recognize them and identify their characteristic features - presents rational nomenclature of binary fluid phase diagrams - includes problems and solutions for self-testing, exercises or seminars

Molecular Thermodynamics of Fluid-Phase Equilibria

Molecular Thermodynamics of Fluid-Phase Equilibria
Author: John M. Prausnitz
Publisher: Pearson Education
Total Pages: 1150
Release: 1998-10-22
Genre: Science
ISBN: 0132440504

The classic guide to mixtures, completely updated with new models, theories, examples, and data. Efficient separation operations and many other chemical processes depend upon a thorough understanding of the properties of gaseous and liquid mixtures. Molecular Thermodynamics of Fluid-Phase Equilibria, Third Edition is a systematic, practical guide to interpreting, correlating, and predicting thermodynamic properties used in mixture-related phase-equilibrium calculations. Completely updated, this edition reflects the growing maturity of techniques grounded in applied statistical thermodynamics and molecular simulation, while relying on classical thermodynamics, molecular physics, and physical chemistry wherever these fields offer superior solutions. Detailed new coverage includes: Techniques for improving separation processes and making them more environmentally friendly. Theoretical concepts enabling the description and interpretation of solution properties. New models, notably the lattice-fluid and statistical associated-fluid theories. Polymer solutions, including gas-polymer equilibria, polymer blends, membranes, and gels. Electrolyte solutions, including semi-empirical models for solutions containing salts or volatile electrolytes. Coverage also includes: fundamentals of classical thermodynamics of phase equilibria; thermodynamic properties from volumetric data; intermolecular forces; fugacities in gas and liquid mixtures; solubilities of gases and solids in liquids; high-pressure phase equilibria; virial coefficients for quantum gases; and much more. Throughout, Molecular Thermodynamics of Fluid-Phase Equilibria strikes a perfect balance between empirical techniques and theory, and is replete with useful examples and experimental data. More than ever, it is the essential resource for engineers, chemists, and other professionals working with mixtures and related processes.

Phase Equilibria

Phase Equilibria
Author: Andre Muhlbauer
Publisher: CRC Press
Total Pages: 490
Release: 1997-09-01
Genre: Science
ISBN: 9781560325505

This new book provides, for the first time, a thorough survey of the techniques and equipment for both high- and low-pressure phase equilibrium measurement and addresses the equally challenging task of accurately modeling or predicting the equilibria. The book is unique because it combines in depth and authoritative coverage of both experimental and theoretical procedures in a single volume. Written as a reference for practicing engineers and scientists in the chemical engineering field, this book will also be useful as an advanced graduate-level text.

Phase Equilibrium in Mixtures

Phase Equilibrium in Mixtures
Author: M. B. King
Publisher: Elsevier
Total Pages: 604
Release: 2013-10-22
Genre: Technology & Engineering
ISBN: 1483152413

Phase Equilibrium in Mixtures deals with phase equilibrium and the methods of correlating, checking, and predicting phase data. Topics covered range from latent heat and vapor pressure to dilute solutions, ideal and near-ideal solutions, and consistency tests. Molecular considerations and their use for the prediction and correlation of data are also discussed. Comprised of nine chapters, this volume begins with an introduction to the role of thermodynamics and the criteria for equilibrium between phases, along with fugacity and the thermodynamic functions of mixing. The discussion then turns to some of the phase phenomena which may be encountered in chemical engineering practice; methods of correlating and extending vapor pressure data and practical techniques for calculating latent heats from these data; the behavior of dilute solutions both at low and high pressures for reacting and non-reacting systems; and the behavior of ideal and near-ideal solutions. The remaining chapters explore non-ideal solutions at normal pressures; practical methods for testing the thermodynamic consistency of phase data; and the extent to which the broad aspects of phase behavior may be interpreted in the light of simple molecular considerations. This book is intended primarily for graduate chemical engineers but should also be of interest to those graduates in physics or chemistry who need to use phase equilibrium data.

Phase Equilibrium Engineering

Phase Equilibrium Engineering
Author: Esteban Alberto Brignole
Publisher: Newnes
Total Pages: 347
Release: 2013-04-02
Genre: Technology & Engineering
ISBN: 044459471X

Traditionally, the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design and control of the phase conditions that a process needs. Phase Equilibrium Engineering presents a systematic study and application of phase equilibrium tools to the development of chemical processes. The thermodynamic modeling of mixtures for process development, synthesis, simulation, design and optimization is analyzed. The relation between the mixture molecular properties, the selection of the thermodynamic model and the process technology that could be applied are discussed. A classification of mixtures, separation process, thermodynamic models and technologies is presented to guide the engineer in the world of separation processes. The phase condition required for a given reacting system is studied at subcritical and supercritical conditions. The four cardinal points of phase equilibrium engineering are: the chemical plant or process, the laboratory, the modeling of phase equilibria and the simulator. The harmonization of all these components to obtain a better design or operation is the ultimate goal of phase equilibrium engineering. - Methodologies are discussed using relevant industrial examples - The molecular nature and composition of the process mixture is given a key role in process decisions - Phase equilibrium diagrams are used as a drawing board for process implementation

Fluids in the Crust

Fluids in the Crust
Author: K. Shmulovich
Publisher: Springer Science & Business Media
Total Pages: 348
Release: 1994-12-31
Genre: Science
ISBN: 9780412563201

For much of the 20th century, scientific contacts between the Soviet Union and western countries were few and far between, and often super ficial. In earth sciences, ideas and data were slow to cross the Iron Curtain, and there was considerable mutual mistrust of diverging scient ific philosophies. In geochemistry, most western scientists were slow to appreciate the advances being made in the Soviet Union by os. Korz hinskii, who put the study of ore genesis on a rigorous thermodynamic basis as early as the 1930s. Korzhinskii appreciated that the most fun damental requirement for the application of quantitative models is data on mineral and fluid behaviour at the elevated pressures and temper atures that occur in the Earth's crust. He began the work at the Institute of Experimental Mineralogy (IEM) in 1965, and it became a separate establishment of the Academy of Sciences in Chernogolovka in 1969. The aim was to initiate a major programme of high P-T experimental studies to apply physical chemistry and thermodynamics to resolving geological problems. For many years, Chernogolovka was a closed city, and western scient ists were unable to visit the laboratories, but with the advent of peres troika in 1989, the first groups of visitors were eagerly welcomed to the IEM. What they found was an experimental facility on a massive scale, with 300 staff, including 80 researchers and most of the rest pro viding technical support.

Phase Equilibria, Phase Diagrams and Phase Transformations

Phase Equilibria, Phase Diagrams and Phase Transformations
Author: Mats Hillert
Publisher: Cambridge University Press
Total Pages: 525
Release: 2007-11-22
Genre: Technology & Engineering
ISBN: 1139465864

Computational tools allow material scientists to model and analyze increasingly complicated systems to appreciate material behavior. Accurate use and interpretation however, requires a strong understanding of the thermodynamic principles that underpin phase equilibrium, transformation and state. This fully revised and updated edition covers the fundamentals of thermodynamics, with a view to modern computer applications. The theoretical basis of chemical equilibria and chemical changes is covered with an emphasis on the properties of phase diagrams. Starting with the basic principles, discussion moves to systems involving multiple phases. New chapters cover irreversible thermodynamics, extremum principles, and the thermodynamics of surfaces and interfaces. Theoretical descriptions of equilibrium conditions, the state of systems at equilibrium and the changes as equilibrium is reached, are all demonstrated graphically. With illustrative examples - many computer calculated - and worked examples, this textbook is an valuable resource for advanced undergraduates and graduate students in materials science and engineering.

Aqueous Systems at Elevated Temperatures and Pressures

Aqueous Systems at Elevated Temperatures and Pressures
Author: Roberto Fernandez-Prini
Publisher: Elsevier
Total Pages: 767
Release: 2004-07-06
Genre: Science
ISBN: 0080471994

The International Association for the Properties of Water and Steam (IAPWS) has produced this book in order to provide an accessible, up-to-date overview of important aspects of the physical chemistry of aqueous systems at high temperatures and pressures. These systems are central to many areas of scientific study and industrial application, including electric power generation, industrial steam systems, hydrothermal processing of materials, geochemistry, and environmental applications. The authors' goal is to present the material at a level that serves both the graduate student seeking to learn the state of the art, and also the industrial engineer or chemist seeking to develop additional expertise or to find the data needed to solve a specific problem. The wide range of people for whom this topic is important provides a challenge. Advanced work in this area is distributed among physical chemists, chemical engineers, geochemists, and other specialists, who may not be aware of parallel work by those outside their own specialty. The particular aspects of high-temperature aqueous physical chemistry of interest to one industry may be irrelevant to another; yet another industry might need the same basic information but in a very different form. To serve all these constituencies, the book includes several chapters that cover the foundational thermophysical properties (such as gas solubility, phase behavior, thermodynamic properties of solutes, and transport properties) that are of interest across numerous applications. The presentation of these topics is intended to be accessible to readers from a variety of backgrounds. Other chapters address fundamental areas of more specialized interest, such as critical phenomena and molecular-level solution structure. Several chapters are more application-oriented, addressing areas such as power-cycle chemistry and hydrothermal synthesis. As befits the variety of interests addressed, some chapters provide more theoretical guidance while others, such as those on acid/base equilibria and the solubilities of metal oxides and hydroxides, emphasize experimental techniques and data analysis.- Covers both the theory and applications of all Hydrothermal solutions - Provides an accessible, up-to-date overview of important aspects of the physical chemistry of aqueous systems at high temperatures and pressures- The presentation of the book is understandable to readers from a variety of backgrounds

Phase Transitions in Solids Under High Pressure

Phase Transitions in Solids Under High Pressure
Author: Vladimir Davydovich Blank
Publisher: CRC Press
Total Pages: 455
Release: 2013-10-25
Genre: Science
ISBN: 1466594241

The use of high-pressure techniques has become popular for studying the nature of substances and phenomena occurring in them, especially as a means of obtaining new materials (synthesis under high pressure) and processing known materials (hydroextrusion). A product of many years of research by the authors and their colleagues, Phase Transitions in Solids under High Pressure discusses the relationships of phase transformations in solids under high pressure, the mechanism of these transformations, crystal geometry, the effect of deformation, the conditions of formation, and preservation of the high-pressure phases under normal pressure. The book begins with an introduction that describes the relationship of the thermodynamics of phase transformations and the kinetics of the transformations. This is followed by a chapter explaining the equipment and mostly original procedures for investigating phase transformation in solids under high hydrostatic and quasi-hydrostatic pressures. The book covers phase transformations under high pressure in a wide temperature range in the elements carbon, silicon, germanium, titanium, zirconium, iron, gallium, and cerium as well as in titanium- and iron-based alloys and AIBVII, AIIBVI, and AIIIBV compounds. In addition, the book examines the kinetics of phase transformations in iron-based alloys in isobaric–isothermal conditions. The authors present results for phase transformations in deformation under high pressure, describe several non-trivial effects associated with phase transformations under high pressure, and analyze the kinetics and hysteresis of high-temperature and low-temperature phase transformations. They conclude by describing the role of investigations under high pressure for determining general relationships governing phase transformations in solids.

Phase Equilibrium Engineering

Phase Equilibrium Engineering
Author: Esteban Brignole
Publisher: Elsevier Inc. Chapters
Total Pages: 42
Release: 2013-04-02
Genre: Science
ISBN: 0128082607

In this chapter, the basic methodologies of phase equilibrium engineering are introduced through the systematic analysis of several case studies. Some of the thermodynamic tools that have been presented in the previous chapters are applied to illustrate how the phase and conceptual process design of complex engineering problems can be tackled from a phase equilibrium engineering approach. In all the case studies, the first step is to consider in great detail the properties of the process feed, the components, their physical properties, concentrations, and molecular interactions. This information is then used for the selection of thermodynamic models, a suitable technology, pressure, temperature, and compositional operating boundaries. It is shown how the mixture composition and the process goals and specifications determine the process scheme and the unit thermodynamic sensitivity. In addition, the importance of the mixture composition is highlighted in combination with the energy and material balance in the case study for the selection of the desirable natural gas cryogenic technologies. The use of a pressure versus temperature drawing board is used to plot the process trajectory and the mixture phase envelopes from the initial conditions to the key phase engineering design problem. Moreover, the phase design provides also a sound basis for the process initial specification and computer simulation. As another example of phase equilibrium engineering, the heat integration in a complex process is solved by the application of the Gibbs phase rule to the LLV equilibria of a ternary mixture.