Numerical Methods for Fluid Dynamics V

Numerical Methods for Fluid Dynamics V
Author: K. W. Morton
Publisher: Oxford University Press
Total Pages: 650
Release: 1995
Genre: Mathematics
ISBN: 9780198514800

This book contains the proceedings of an international conference on Numerical Methods for Fluid Dynamics held at the University of Oxford in April 1995. It provides a summary of recent research on the computational aspects of fluid dynamics. It includes contributions from many distinguished mathematicians and engineers and, as always, the standard of papers is high. The main themes of the book are algorithms and algorithmic needs arising from applications, Navier-Stokes on flexible grids, and environmental computational fluid dynamics. Graduate students of numerical analysis will find the up-to-date coverage of research in this book very useful.

Numerical Computation of Internal and External Flows

Numerical Computation of Internal and External Flows
Author: Charles Hirsch
Publisher: Butterworth-Heinemann
Total Pages: 708
Release: 2006
Genre: Juvenile Nonfiction
ISBN: 9780750665957

The second edition of this book is a self-contained introduction to computational fluid dynamics (CFD). It covers the fundamentals of the subject and is ideal as a text or a comprehensive reference to CFD theory and practice. New approach takes readers seamlessly from first principles to more advanced and applied topics. Presents the essential components of a simulation system at a level suitable for those coming into contact with CFD for the first time, and is ideal for those who need a comprehensive refresher on the fundamentals of CFD. Enhanced pedagogy features chapter objectives, hands-on practice examples and end of chapter exercises. Extended coverage of finite difference, finite volume and finite element methods. New chapters include an introduction to grid properties and the use of grids in practice. Includes material on 2-D inviscid, potential and Euler flows, 2-D viscous flows and Navier-Stokes flows to enable the reader to develop basic CFD simulations. Includes best practice guidelines for applying existing commercial or shareware CFD tools.

Adaptive High-order Methods in Computational Fluid Dynamics

Adaptive High-order Methods in Computational Fluid Dynamics
Author: Z. J. Wang
Publisher: World Scientific
Total Pages: 471
Release: 2011
Genre: Science
ISBN: 9814313181

This book consists of important contributions by world-renowned experts on adaptive high-order methods in computational fluid dynamics (CFD). It covers several widely used, and still intensively researched methods, including the discontinuous Galerkin, residual distribution, finite volume, differential quadrature, spectral volume, spectral difference, PNPM, and correction procedure via reconstruction methods. The main focus is applications in aerospace engineering, but the book should also be useful in many other engineering disciplines including mechanical, chemical and electrical engineering. Since many of these methods are still evolving, the book will be an excellent reference for researchers and graduate students to gain an understanding of the state of the art and remaining challenges in high-order CFD methods.

Computational Fluid Dynamics 2006

Computational Fluid Dynamics 2006
Author: Herman Deconinck
Publisher: Springer
Total Pages: 916
Release: 2016-04-01
Genre:
ISBN: 9783662500903

ThisbookcontainstheproceedingsoftheFourthInternationalConference onComputationalFluidDynamics(ICCFD4), heldinGent, Belgiumfrom July10through16,2006. TheICCFDconferenceseriesisanoutcomeofthe mergeroftwoimportantstreamsofconferencesinComputationalFluid- namics: InternationalConferenceonNumericalMethodsinFluidDynamics, ICNMFD(since1996)andInternationalSymposiumonComputationalFluid Dynamics, ISCFD(since1985). In1998itwasdecidedtojointhetwoand ICCFD emerged as a biannual meeting, held in Kyoto in 2000, Sydney in 2002, Toronto in 2004 and Gent in 2006. Thus, the ICCFD series became theleadinginternationalconferenceseriesforscientists, mathematiciansand engineersinterestedinthecomputationof?uid?ow. The4theditionoftheconferencehasattracted200participantsfromall overtheworld;270abstractswerereceived, ofwhich135wereselectedina carefulpeerreviewprocessbytheexecutivecommittee(C. H. Bruneau, J. -J. Chattot, D. Kwak, N. Satofuka, D. W. Zingg, E. DickandH. Deconinck)for oralpresentationandafurther21forposterpresentation. Thepaperscontainedintheseproceedingsprovideanexcellentsnapshot of the ?eld of Computational Fluid Dynamics as of 2006. Invited keynote lecturesbyrenownedresearchersareincluded, withcontributionsinthe?eld ofdiscretizationschemes, high-endcomputingandengineeringchallenges, and two-phase?ow. Thesekeynotecontributionsarecomplementedby137regular papersonthemostdiverseaspectsofCFD: -Innovativealgorithmdevelopmentfor?owsimulation, optimisationandc- trol: higher-ordermethods(DG, FV, FEandRDmethods), iterativemethods andmultigrid, solutionadaptivemeshtechniques, errorestimationandc- trol, parallelalgorithms. -Innovativemodelingof?owphysicsintheareaofcompressibleandinc- pressible ?ows: hypersonic and reacting ?ows, two-phase ?ows, turbulence (LES, DES, DNS, andtransition), vortexdynamics, boundarylayerstability, multi-scalephysics, magnetohydrodynamics. Preface VII -advancedapplicationsusingtheabovementionedinnovativetechnology, and multidisciplinaryapplicationsincludingaero-elasticityandaero-acoustics. ThanksareduetooursponsorsNASA, theFWOResearchFoundation FlandersandtheEuropeanUnionthroughtheEUA4XMarieCurieproject. Inparticular, thegenerousgrantfromNASAisakeyfactorinthesuccessof thisconferenceseriesandthepublicationoftheseProceedings. Wealsowouldliketothankthesta?andPhDstudentsofthevonKarman InstituteandtheDepartmentof?ow, heatandcombustionmechanicsofthe University of Gent, for the help they provided toward the success of this conference. Sint-Genesius-Rode, Belgium HermanDeconinck vonKarmanInstituteforFluidDynamics Ghent, Belgium ErikDick GhentUniversity September2006 ConferenceChair Contents PartIInvitedSpeakers Twonewtechniquesforgeneratingexactlyincompressible approximatevelocities BernardoCockburn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 RoleofHigh-EndComputinginMeetingNASA'sScience andEngineeringChallenges RupakBiswas, EugeneL. Tu, WilliamR. VanDalsem. . . . . . . . . . . . . . . . 14 RecentAdvancesofMulti-phaseFlowComputationwiththe AdaptiveSoroban-gridCubicInterpolatedPropagation(CIP) Method TakashiYabe, YouichiOgata, KenjiTakizawa. . . . . . . . . . . . . . . . . . . . . . . 29 PartIISchemes OntheComputationofSteady-StateCompressibleFlows UsingaDGMethod HongLuo, JosephD. Baum, RainaldL]ohner. . . . . . . . . . . . . . . . . . . . . . . . 47 Space-TimeDiscontinuousGalerkinMethodforLarge AmplitudeNonlinearWaterWaves YanXu, JaapJ. W. vanderVegt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 AdiscontinuousGalerkinmethodwi

Computational Fluid Dynamics 2008

Computational Fluid Dynamics 2008
Author: Haecheon Choi
Publisher: Springer Science & Business Media
Total Pages: 776
Release: 2009-07-23
Genre: Technology & Engineering
ISBN: 3642012736

We are delighted to present this book which contains the Proceedings of the Fifth International Conference on Computational Fluid Dynamics (ICCFD5), held in Seoul, Korea from July 7 through 11, 2008. The ICCFD series has established itself as the leading international conference series for scientists, mathematicians, and engineers specialized in the computation of fluid flow. In ICCFD5, 5 Invited Lectures and 3 Keynote Lectures were delivered by renowned researchers in the areas of innovative modeling of flow physics, innovative algorithm development for flow simulation, optimization and control, and advanced multidisciplinary - plications. There were a total of 198 contributed abstracts submitted from 25 countries. The executive committee consisting of C. H. Bruneau (France), J. J. Chattot (USA), D. Kwak (USA), N. Satofuka (Japan), and myself, was responsible for selection of papers. Each of the members had a separate subcommittee to carry out the evaluation. As a result of this careful peer review process, 138 papers were accepted for oral presentation and 28 for poster presentation. Among them, 5 (3 oral and 2 poster presentation) papers were withdrawn and 10 (4 oral and 6 poster presentation) papers were not presented. The conference was attended by 201 delegates from 23 countries. The technical aspects of the conference were highly beneficial and informative, while the non-technical aspects were fully enjoyable and memorable. In this book, 3 invited lectures and 1 keynote lecture appear first. Then 99 c- tributed papers are grouped under 21 subject titles which are in alphabetical order.

High-order Numerical Methods for Unstructured Grids and Sliding Mesh

High-order Numerical Methods for Unstructured Grids and Sliding Mesh
Author: Gonzalo Sáez Mischlich
Publisher:
Total Pages: 0
Release: 2021
Genre:
ISBN:

High-order numerical methods have proven to be an essential tool to improve the accuracy of simulations involving turbulent flows through the solution of conservation laws. Such flows appear in a wide variety of industrial applications and its correct prediction is crucial to reduce the power consumption and improve the efficiency of these processes. The present study implements and analyzes different types of high-order spatial discretization schemes for unstructured grids to assess and quantify their accuracy in simulations of turbulent flows. In particular, high-order Finite Volume methods (FVM) based on least squares and fully constrained deconvolution operators are considered and their accuracy is evaluated in a variety of linear and non-linear test cases and throughanalytical analysis. Special emphasis is placed on the comparison of formally second-order and high-order FVM, showing that the former can over-perform the latter in terms of accuracy and computational performance in under-resolved configurations. High-order Spectral Element methods (SEM), including Spectral Difference (SD) and Flux Reconstruction (FR), are compared in different linear and non-linear configurations. Furthermore, a SD GPU-based solver (based on the open-source PyFR solver) is developed and its performance with respect to other state of the art CPU-based solvers will be discussed, showing that the developed GPU-based solver outperforms other state of the art CPU-based solvers in terms of performance-per-euro and performance-per-watt. The accuracy and behavior of SEM under aliasing are assessed in linear test cases using analytical tools. The use of grids with high-order cells, which allow to better describe the surfaces of interests of a given simulation, in combination with SEM is also analyzed. The latter analysis demonstrates that special care must be taken to ensure appropriate numerical accuracy when utilizing meshes with such elements. This document also presents the development and the analysis of the Spectral Difference Raviart-Thomas (SDRT) method for two and three-dimensional tensor product and simplex elements. This method is equivalent to the SD formulation for tensor product elements and it can be considered as a natural extension of the SD formulation for simplex elements. Additionally, a new family of FR methods, which is equivalent to the SDRT method under certain circumstances, is described. All these developments were implemented in the open-source PyFR solver and are compatible with CPU and GPU architectures. In the context of high-order simulations of turbulent flows found in rotor-stator interaction test cases, a sliding mesh method (which involves non-conformal grids and mesh motion) specifically tailored for massivelyparallel simulations is implemented within a CPU-based solver. The developed method is compatible with second-order and high-order FVM and SEM. Grid movement, needed to simulate rotor-stator test cases due to the relative movement of each domain zone, is treated using the Arbitrary-Lagrangian-Eulerian (ALE) formulation. The analysis of such formulation depicts its important influence on the numerical accuracy and stability of numerical simulations with mesh motion. Moreover, specific non-conformal discretization methodscompatible with second-order and high-order FVM and SEM are developed and their accuracy is assessed on different non-linear test cases. The parallel scalability of the method is assessed with up to 11000 cores, proving appropriate computational efficiency. The accuracy of the implementation is assessed through a set of linear and non-linear test cases. Preliminary results of the turbulent flow around a DGEN 380 fan stage in an under-resolved configuration are shown and compared to available experimental data.

Computational Fluid Dynamics Review 2010

Computational Fluid Dynamics Review 2010
Author: M. M. Hafez
Publisher: World Scientific
Total Pages: 630
Release: 2010
Genre: Science
ISBN: 981431336X

This volume contains 25 review articles by experts which provide up-to-date information about the recent progress in computational fluid dynamics (CFD). Due to the multidisciplinary nature of CFD, it is difficult to keep up with all the important developments in related areas. CFD Review 2010 would therefore be useful to researchers by covering the state-of-the-art in this fast-developing field.

Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids

Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids
Author: Wanai Li
Publisher: Springer
Total Pages: 158
Release: 2014-05-23
Genre: Technology & Engineering
ISBN: 3662434326

This thesis focuses on the development of high-order finite volume methods and discontinuous Galerkin methods, and presents possible solutions to a number of important and common problems encountered in high-order methods, such as the shock-capturing strategy and curved boundary treatment, then applies these methods to solve compressible flows.