High Heat Flux Forced Convection Boiling Heat Transfer From Small Regions To Subcooled Turbulent Flow
Download High Heat Flux Forced Convection Boiling Heat Transfer From Small Regions To Subcooled Turbulent Flow full books in PDF, epub, and Kindle. Read online free High Heat Flux Forced Convection Boiling Heat Transfer From Small Regions To Subcooled Turbulent Flow ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Satish Kandlikar |
Publisher | : Elsevier |
Total Pages | : 492 |
Release | : 2006 |
Genre | : Science |
ISBN | : 9780080445274 |
&Quot;This book explores flow through passages with hydraulic diameters from about 1 [mu]m to 3 mm, covering the range of minichannels and microchannels. Design equations along with solved examples and practice problems are also included to serve the needs of practicing engineers and students in a graduate course."--BOOK JACKET.
Author | : VDI Gesellschaft |
Publisher | : Springer Science & Business Media |
Total Pages | : 1608 |
Release | : 2010-07-21 |
Genre | : Science |
ISBN | : 3540778764 |
For more than 50 years, the Springer VDI Heat Atlas has been an indispensable working means for engineers dealing with questions of heat transfer. Featuring 50% more content, this new edition covers most fields of heat transfer in industrial and engineering applications. It presents the interrelationships between basic scientific methods, experimental techniques, model-based analysis and their transfer to technical applications.
Author | : John G. Collier |
Publisher | : Clarendon Press |
Total Pages | : 646 |
Release | : 1994-05-19 |
Genre | : |
ISBN | : 0191591262 |
* Third edition of a well-known and well established text both in industry and for teaching * Fully up-to-date and includes extra problems This book is an aid to heat exchanger design written primarily for design and development engineers in the chemical process, power generation, and refrigeration industries. It provides a comprehensive reference on two-phase flows, boiling, and condensation. The text covers all the latest advances like flows over tube bundles and two-phase heat transfer regarding refrigerants and petrochemicals. Another feature of this third edition is many new problems at chapter ends to enhance its use as a teaching text for graduate and post-graduate courses on two-phase flow and heat transfer. - ;This book is written for practising engineers as a comprehensive reference on two-phase flows, boiling, and condensation. It deals with methods for estimating two-phase flow pressure drops and heat transfer rates. It is a well-known reference book in its third edition and is also used as a text for advanced university courses. Both authors write from practical experience as both are professional engineers. -
Author | : Mohsen Sheikholeslami |
Publisher | : Elsevier |
Total Pages | : 782 |
Release | : 2018-09-14 |
Genre | : Technology & Engineering |
ISBN | : 0128141530 |
Application of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer discusses this powerful numerical method that uses the advantages of both finite volume and finite element methods for the simulation of multi-physics problems in complex geometries, along with its applications in heat transfer and nanofluid flow. The book applies these methods to solve various applications of nanofluid in heat transfer enhancement. Topics covered include magnetohydrodynamic flow, electrohydrodynamic flow and heat transfer, melting heat transfer, and nanofluid flow in porous media, all of which are demonstrated with case studies. This is an important research reference that will help readers understand the principles and applications of this novel method for the analysis of nanofluid behavior in a range of external forces. - Explains governing equations for nanofluid as working fluid - Includes several CVFEM codes for use in nanofluid flow analysis - Shows how external forces such as electric fields and magnetic field effects nanofluid flow
Author | : American Society of Mechanical Engineers. Winter Annual Meeting |
Publisher | : American Society of Civil Engineers |
Total Pages | : 96 |
Release | : 1989 |
Genre | : Science |
ISBN | : |
Author | : Sadik Kakaç |
Publisher | : Springer Science & Business Media |
Total Pages | : 953 |
Release | : 2012-12-06 |
Genre | : Technology & Engineering |
ISBN | : 9401110905 |
Electronic technology is developing rapidly and, with it, the problems associated with the cooling of microelectronic equipment are becoming increasingly complex. So much so that it is necessary for experts in the fluid and thermal sciences to become involved with the cooling problem. Such thoughts as these led to an approach to leading specialists with a request to contribute to the present book. Cooling of Electronic Systems presents the technical progress achieved in the fundamentals of the thermal management of electronic systems and thermal strategies for the design of microelectronic equipment. The book starts with an introduction to the cooling of electronic systems, involving such topics as trends in computer system cooling, the cooling of high performance computers, thermal design of microelectronic components, natural and forced convection cooling, cooling by impinging air and liquid jets, thermal control systems for high speed computers, together with a detailed review of advances in manufacturing and assembly technology. Following this, practical methods for the determination of the parameters required for the thermal analysis of electronic systems and the accurate prediction of temperature in consumer electronics. Cooling of Electronic Systems is currently the most up-to-date book on the thermal management of electronic and microelectronic equipment, and the subject is presented by eminent scientists and experts in the field. Vital reading for all designers of modern, high-speed computers.
Author | : David Ting |
Publisher | : Academic Press |
Total Pages | : 258 |
Release | : 2016-02-23 |
Genre | : Science |
ISBN | : 0128039833 |
Basics of Engineering Turbulence introduces flow turbulence to engineers and engineering students who have a fluid dynamics background, but do not have advanced knowledge on the subject. It covers the basic characteristics of flow turbulence in terms of its many scales. The author uses a pedagogical approach to help readers better understand the fundamentals of turbulence scales, especially how they are derived through the order of magnitude analysis. This book is intended for those who have an interest in flowing fluids. It provides some background, though of limited scope, on everyday flow turbulence, especially in engineering applications. The book begins with the 'basics' of turbulence which is necessary for any reader being introduced to the subject, followed by several examples of turbulence in engineering applications. This overall approach gives readers all they need to grasp both the fundamentals of turbulence and its applications in practical instances. - Focuses on the basics of turbulence for applications in engineering and industrial settings - Provides an understanding of concepts that are often challenging, such as energy distribution among the turbulent structures, the effective diffusivity, and the theory behind turbulence scales - Offers a user-friendly approach with clear-and-concise explanations and illustrations, as well as end-of-chapter problems
Author | : Erich Hahne |
Publisher | : |
Total Pages | : 508 |
Release | : 1977 |
Genre | : Science |
ISBN | : |
Author | : |
Publisher | : |
Total Pages | : 548 |
Release | : 1997 |
Genre | : Heat |
ISBN | : |
Author | : Bahman Zohuri |
Publisher | : Springer |
Total Pages | : 735 |
Release | : 2015-04-20 |
Genre | : Technology & Engineering |
ISBN | : 3319134191 |
This book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor power systems. It includes all the necessary information regarding the fundamental laws to gain a complete understanding and apply them specifically to the challenges of operating nuclear plants. Beginning with definitions of thermodynamic variables such as temperature, pressure and specific volume, the book then explains the laws in detail, focusing on pivotal concepts such as enthalpy and entropy, irreversibility, availability, and Maxwell relations. Specific applications of the fundamentals to Brayton and Rankine cycles for power generation are considered in-depth, in support of the book’s core goal- providing an examination of how the thermodynamic principles are applied to the design, operation and safety analysis of current and projected reactor systems. Detailed appendices cover metric and English system units and conversions, detailed steam and gas tables, heat transfer properties, and nuclear reactor system descriptions.