Profile Modifications Resulting from Early High-harmonic Fast Wave Heating in NSTX.

Profile Modifications Resulting from Early High-harmonic Fast Wave Heating in NSTX.
Author:
Publisher:
Total Pages:
Release: 2001
Genre:
ISBN:

Experiments have been performed in the National Spherical Torus Experiment (NSTX) to inject high harmonic fast wave (HHFW) power early during the plasma current ramp-up in an attempt to reduce the current penetration rate to raise the central safety factor during the flattop phase of the discharge. To date, up to 2 MW of HHFW power has been coupled to deuterium plasmas as early as t = 50 ms using the slowest interstrap phasing of k.

High-harmonic Fast Wave Heating Experiments in CDX-U.

High-harmonic Fast Wave Heating Experiments in CDX-U.
Author:
Publisher:
Total Pages:
Release: 2001
Genre:
ISBN:

One of the primary objectives of the proposed National Spherical Tokamak Experiment (NSTX) is the investigation of very high[beta] regimes. Consequently, finding efficient methods of non-inductive heating and current drive required to heat and sustain such plasmas is of considerable importance. High-frequency fast waves are a promising candidate in this regard. However, in NSTX, the field-line pitch at the outer midplane will range from 0 up to 60 degrees from plasma start-up to current flattop. Thus, antenna strap orientation with respect to the edge magnetic field may have a serious impact on power coupling and absorption. To address this issue, the vacuum vessel of the Current Drive Experiment -- Upgrade (CDX-U) spherical tokamak has been upgraded to accommodate a rotatable two-strap antenna capable of handling several hundred kilowatts in short pulses. Details of the antenna design and results from loading measurements made as a function of power, strap angle, and strap phasing will be presented. Results from microwave scattering experiments will also be discussed.

High-harmonic Fast-wave Heating in NSTX.

High-harmonic Fast-wave Heating in NSTX.
Author:
Publisher:
Total Pages:
Release: 2001
Genre:
ISBN:

High-Harmonic Fast-Wave (HHFW), a radio-frequency technique scenario applicable to high-beta plasmas, has been selected as one of the main auxiliary heating systems on the National Spherical Torus Experiment (NSTX). The HHFW antenna assembly comprises 12 toroidally adjacent current elements, extending poloidally and centered on the equatorial plane. This paper reviews experimental results obtained with a symmetrical (vacuum) launching spectrum with k= 14 m(superscript ''-1'') at a frequency of 30 MHz. We describe results obtained when HHFW power is applied to helium and deuterium plasmas, during the plasma-current flattop period of the discharge. Application of 1.8-MW HHFW pulse to MHD quiescent plasmas resulted in strong electron heating, during which the central electron temperature T(subscript ''eo'') more than doubled from approximately 0.5 keV to 1.15 keV. In deuterium plasmas, HHFW heating was found less efficient, with a central electron temperature increase of the order of 40% during a 1.8-MW HHFW pulse, from approximately 400 eV to approximately 550 eV. (At HHFW power of 2.4 MW, central electron temperature increased by 60%, reaching 0.625 keV.) HHFW heating in presence of MHD activity is also discussed. A short neutral-beam pulse was applied to permit charge-exchange recombination spectroscopy (CHERS) measurement of the impurity ion temperature T(subscript ''i''). Preliminary CHERS analysis show that ion temperature approximately equals electron temperature during HHFW heating. Of special interest are deuterium discharges, where the application of HHFW power was done during the current ramp-up. We observe the creation of large density gradients in the edge region. In the latter case, the density rose spontaneously to n (subscript ''eo'') less than or equal to 8 x 10 (superscript ''13'') cm (superscript ''-3'').