Heavy Scintillators for Scientific and Industrial Applications
Author | : F. De Notaristefani |
Publisher | : Atlantica Séguier Frontières |
Total Pages | : 648 |
Release | : 1993 |
Genre | : Science |
ISBN | : 9782863321287 |
Download Heavy Scintillators full books in PDF, epub, and Kindle. Read online free Heavy Scintillators ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : F. De Notaristefani |
Publisher | : Atlantica Séguier Frontières |
Total Pages | : 648 |
Release | : 1993 |
Genre | : Science |
ISBN | : 9782863321287 |
Author | : Christian W. Fabjan |
Publisher | : Springer Nature |
Total Pages | : 1083 |
Release | : 2020 |
Genre | : Elementary particles (Physics). |
ISBN | : 3030353184 |
This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
Author | : Claus Grupen |
Publisher | : Springer Science & Business Media |
Total Pages | : 1251 |
Release | : 2012-01-08 |
Genre | : Science |
ISBN | : 3642132715 |
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
Author | : Matthieu Hamel |
Publisher | : Springer Nature |
Total Pages | : 647 |
Release | : 2021-07-10 |
Genre | : Science |
ISBN | : 3030734889 |
This book introduces the physics and chemistry of plastic scintillators (fluorescent polymers) that are able to emit light when exposed to ionizing radiation, discussing their chemical modification in the early 1950s and 1960s, as well as the renewed upsurge in interest in the 21st century. The book presents contributions from various researchers on broad aspects of plastic scintillators, from physics, chemistry, materials science and applications, covering topics such as the chemical nature of the polymer and/or the fluorophores, modification of the photophysical properties (decay time, emission wavelength) and loading of additives to make the material more sensitive to, e.g., fast neutrons, thermal neutrons or gamma rays. It also describes the benefits of recent technological advances for plastic scintillators, such as nanomaterials and quantum dots, which allow features that were previously not achievable with regular organic molecules or organometallics.
Author | : Howard Gordon |
Publisher | : World Scientific |
Total Pages | : 544 |
Release | : 1995-09-26 |
Genre | : |
ISBN | : 9814548766 |
The Fifth International Conference on Calorimetry in High Energy Physics was held Sept. 25 - Oct. 1, 1994 at Brookhaven National Laboratory. The results presented show that calorimetry is a key element in the experiments at the frontier. As these experiments evolve, there are new challenges for calorimetry in terms of performance in energy and position resolution at ever increasing rates. The proceedings document the state-of-the-art in calorimetry.
Author | : Douglas McGregor |
Publisher | : CRC Press |
Total Pages | : 1286 |
Release | : 2020-08-19 |
Genre | : Political Science |
ISBN | : 1000038580 |
Radiation Detection: Concepts, Methods, and Devices provides a modern overview of radiation detection devices and radiation measurement methods. The book topics have been selected on the basis of the authors’ many years of experience designing radiation detectors and teaching radiation detection and measurement in a classroom environment. This book is designed to give the reader more than a glimpse at radiation detection devices and a few packaged equations. Rather it seeks to provide an understanding that allows the reader to choose the appropriate detection technology for a particular application, to design detectors, and to competently perform radiation measurements. The authors describe assumptions used to derive frequently encountered equations used in radiation detection and measurement, thereby providing insight when and when not to apply the many approaches used in different aspects of radiation detection. Detailed in many of the chapters are specific aspects of radiation detectors, including comprehensive reviews of the historical development and current state of each topic. Such a review necessarily entails citations to many of the important discoveries, providing a resource to find quickly additional and more detailed information. This book generally has five main themes: Physics and Electrostatics needed to Design Radiation Detectors Properties and Design of Common Radiation Detectors Description and Modeling of the Different Types of Radiation Detectors Radiation Measurements and Subsequent Analysis Introductory Electronics Used for Radiation Detectors Topics covered include atomic and nuclear physics, radiation interactions, sources of radiation, and background radiation. Detector operation is addressed with chapters on radiation counting statistics, radiation source and detector effects, electrostatics for signal generation, solid-state and semiconductor physics, background radiations, and radiation counting and spectroscopy. Detectors for gamma-rays, charged-particles, and neutrons are detailed in chapters on gas-filled, scintillator, semiconductor, thermoluminescence and optically stimulated luminescence, photographic film, and a variety of other detection devices.
Author | : |
Publisher | : |
Total Pages | : 762 |
Release | : 1993 |
Genre | : Power resources |
ISBN | : |
Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.
Author | : Paul Lecoq |
Publisher | : Springer |
Total Pages | : 420 |
Release | : 2016-11-25 |
Genre | : Science |
ISBN | : 3319455222 |
This second edition features new chapters highlighting advances in our understanding of the behavior and properties of scintillators, and the discovery of new families of materials with light yield and excellent energy resolution very close to the theoretical limit. The book focuses on the discovery of next-generation scintillation materials and on a deeper understanding of fundamental processes. Such novel materials with high light yield as well as significant advances in crystal engineering offer exciting new perspectives. Most promising is the application of scintillators for precise time tagging of events, at the level of 100 ps or higher, heralding a new era in medical applications and particle physics. Since the discovery of the Higgs Boson with a clear signature in the lead tungstate scintillating blocks of the CMS Electromagnetic Calorimeter detector, the current trend in particle physics is toward very high luminosity colliders, in which timing performance will ultimately be essential to mitigating pile-up problems. New and extremely fast light production mechanisms based on Hot-Intraband-Luminescence as well as quantum confinement are exploited for this purpose. Breakthroughs such as crystal engineering by means of co-doping procedures and selection of cations with small nuclear fragmentation cross-sections will also pave the way for the development of more advanced and radiation-hard materials. Similar innovations are expected in medical imaging, nuclear physics ecology, homeland security, space instrumentation and industrial applications. This second edition also reviews modern trends in our understanding and the engineering of scintillation materials. Readers will find new and updated references and information, as well as new concepts and inspirations to implement in their own research and engineering endeavors.
Author | : Mikhail Korzhik |
Publisher | : Springer Nature |
Total Pages | : 258 |
Release | : 2020-03-09 |
Genre | : Science |
ISBN | : 3030219666 |
This book presents the current advances in understanding of the fast excitation transfer processes in inorganic scintillation materials, the discovery of new materials exhibiting excellent time resolution, and the results on the evaluation of timing limits for scintillation detectors. The book considers in-depth basic principles of primary processes in energy relaxation, which play a key role in creating scintillating centers to meet a growing demand for knowledge to develop new materials combining high energy and time resolutions. The rate of relaxation varies. However, the goal is to make it extremely fast, occurring within the ps domain or even shorter. The book focuses on fast processes in scintillation materials. This approach enables in-depth understanding of fundamental processes in scintillation and supports the efforts to push the time resolution of scintillation detectors towards 10 ps target. Sophisticated theoretical and advanced experimental research conducted in the last decade is reviewed. Engineering and control of the energy transfer processes in the scintillation materials are addressed. The new era in development of instrumentation for detection of ionizing radiation in high- energy physics experiments, medical imaging and industrial applications is introduced. This book reviews modern trends in the description of the scintillation build up processes in inorganic materials, transient phenomena, and engineering of the scintillation properties. It also provides reliable background of scientific and educational information to stimulate new ideas for readers to implement in their research and engineering. The book is aimed at providing a coherent updated background of scientific and instructive information to stimulate new ideas for readers in their research and engineering.
Author | : Stanley R. Rotman |
Publisher | : Springer Science & Business Media |
Total Pages | : 376 |
Release | : 2013-11-27 |
Genre | : Technology & Engineering |
ISBN | : 146154100X |
Electro-optic devices based on doped wide-band materials are present in industrial uses, in military applications and in everyday life. Whether one engages in laser surgery with a neodymium-Y AG laser or one communicates overseas using optical fibers, the development of these materials is both scientifically and commercially of great interest. Much of the most innovative work has been done in the last 15 years in this area. A minor revolution in optical fiber communications has occurred with the development of erbium-doped fiber amplifiers. Solid-state laser development shifted into high-gear with the theoretical and experimental study of doubly-doped garnet lasers. Recent developments on semiconductor laser arrays are making diode pumped solid-state lasers commercially feasible. The purpose of this book is to detail these developments and to point out that many of the same underlying physical processes control advances in several diverse applications. For example, the basic science of energy transfer will be discussed by Zharikov et al. and Rotman for energy transfer and dopant-defect interactions, respectively; it will also be crucial in understanding cerium-doped scintilla tors, neodymium-chromium lasers, and up-conversion fiber lasers. As another example, phonon-induced non-radiative relaxation will appear in every chapter in this book.