Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains
Author | : Luogeng Hua |
Publisher | : American Mathematical Soc. |
Total Pages | : 192 |
Release | : 1963-12-31 |
Genre | : Mathematics |
ISBN | : 0821815563 |
Download Harmonic Analysis Of Functions Of Several Complex Variables In The Classical Domains full books in PDF, epub, and Kindle. Read online free Harmonic Analysis Of Functions Of Several Complex Variables In The Classical Domains ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Luogeng Hua |
Publisher | : American Mathematical Soc. |
Total Pages | : 192 |
Release | : 1963-12-31 |
Genre | : Mathematics |
ISBN | : 0821815563 |
Author | : KOHN |
Publisher | : Springer Science & Business Media |
Total Pages | : 263 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461252962 |
In recent years there has been increasing interaction among various branches of mathematics. This is especially evident in the theory of several complex variables where fruitful interplays of the methods of algebraic geometry, differential geometry, and partial differential equations have led to unexpected insights and new directions of research. In China there has been a long tradition of study in complex analysis, differential geometry and differential equations as interrelated subjects due to the influence of Professors S. S. Chern and L. K. Hua. After a long period of isolation, in recent years there is a resurgence of scientific activity and a resumption of scientific exchange with other countries. The Hangzhou conference is the first international conference in several complex variables held in China. It offered a good opportunity for mathematicians from China, U.S., Germany, Japan, Canada, and France to meet and to discuss their work. The papers presented in the conference encompass all major aspects of several complex variables, in particular, in such areas as complex differential geometry, integral representation, boundary behavior of holomorphic functions, invariant metrics, holomorphic vector bundles, and pseudoconvexity. Most of the participants wrote up their talks for these proceedings. Some of the papers are surveys and the others present original results. This volume constitutes an overview of the current trends of research in several complex variables.
Author | : R.C. Gunning |
Publisher | : CRC Press |
Total Pages | : 228 |
Release | : 1990-05-01 |
Genre | : Mathematics |
ISBN | : 9780534133085 |
Introduction to Holomorphlc Functions of SeveralVariables, Volumes 1-111 provide an extensiveintroduction to the Oka-Cartan theory of holomorphicfunctions of several variables and holomorphicvarieties. Each volume covers a different aspect andcan be read independently.
Author | : R.C. Gunning |
Publisher | : Routledge |
Total Pages | : 228 |
Release | : 2018-05-02 |
Genre | : Mathematics |
ISBN | : 1351436937 |
Introduction to Holomorphlc Functions of SeveralVariables, Volumes 1-111 provide an extensiveintroduction to the Oka-Cartan theory of holomorphicfunctions of several variables and holomorphicvarieties. Each volume covers a different aspect andcan be read independently.
Author | : R.C. Gunning |
Publisher | : Routledge |
Total Pages | : 218 |
Release | : 2018-05-02 |
Genre | : Mathematics |
ISBN | : 1351436910 |
Introduction to Holomorphlc Functions of SeveralVariables, Volumes 1-111 provide an extensiveintroduction to the Oka-Cartan theory of holomorphicfunctions of several variables and holomorphicvarieties. Each volume covers a different aspect andcan be read independently.
Author | : G.M. Khenkin |
Publisher | : Springer Science & Business Media |
Total Pages | : 267 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642578829 |
Plurisubharmonic functions playa major role in the theory of functions of several complex variables. The extensiveness of plurisubharmonic functions, the simplicity of their definition together with the richness of their properties and. most importantly, their close connection with holomorphic functions have assured plurisubharmonic functions a lasting place in multidimensional complex analysis. (Pluri)subharmonic functions first made their appearance in the works of Hartogs at the beginning of the century. They figure in an essential way, for example, in the proof of the famous theorem of Hartogs (1906) on joint holomorphicity. Defined at first on the complex plane IC, the class of subharmonic functions became thereafter one of the most fundamental tools in the investigation of analytic functions of one or several variables. The theory of subharmonic functions was developed and generalized in various directions: subharmonic functions in Euclidean space IRn, plurisubharmonic functions in complex space en and others. Subharmonic functions and the foundations ofthe associated classical poten tial theory are sufficiently well exposed in the literature, and so we introduce here only a few fundamental results which we require. More detailed expositions can be found in the monographs of Privalov (1937), Brelot (1961), and Landkof (1966). See also Brelot (1972), where a history of the development of the theory of subharmonic functions is given.
Author | : Steven G. Krantz |
Publisher | : Springer Science & Business Media |
Total Pages | : 367 |
Release | : 2009-05-24 |
Genre | : Mathematics |
ISBN | : 0817646698 |
This self-contained text provides an introduction to modern harmonic analysis in the context in which it is actually applied, in particular, through complex function theory and partial differential equations. It takes the novice mathematical reader from the rudiments of harmonic analysis (Fourier series) to the Fourier transform, pseudodifferential operators, and finally to Heisenberg analysis.
Author | : Mike Field |
Publisher | : Cambridge University Press |
Total Pages | : 209 |
Release | : 1982-04 |
Genre | : Mathematics |
ISBN | : 0521283019 |
This self-contained and relatively elementary introduction to functions of several complex variables and complex (especially compact) manifolds was first published in 1982. It was intended be a synthesis of those topics and a broad introduction to the field. The work as a whole will be useful to professional mathematicians or mathematical physicists who wish to acquire a further knowledge of this area of mathematics. Many exercises have been included and indeed they form an integral part of the text. The prerequisites for understanding Part I would be met by any mathematics student with a first degree and together the two parts were designed to provide an introduction to the more advanced works in the subject.
Author | : Elias M. Stein |
Publisher | : Princeton University Press |
Total Pages | : 712 |
Release | : 2016-06-02 |
Genre | : Mathematics |
ISBN | : 140088392X |
This book contains an exposition of some of the main developments of the last twenty years in the following areas of harmonic analysis: singular integral and pseudo-differential operators, the theory of Hardy spaces, L\sup\ estimates involving oscillatory integrals and Fourier integral operators, relations of curvature to maximal inequalities, and connections with analysis on the Heisenberg group.
Author | : American Mathematical Society |
Publisher | : American Mathematical Soc. |
Total Pages | : 324 |
Release | : 1971-12-31 |
Genre | : Mathematics |
ISBN | : 9780821895252 |
Contains papers on such topics as several complex variables, algebraic functions, the power moment problem, quasilinear parabolic equations, trigonometric and orthogonal series, and modules from a categorical viewpoint