Hardy Spaces
Download Hardy Spaces full books in PDF, epub, and Kindle. Read online free Hardy Spaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Nikolaï Nikolski |
Publisher | : Cambridge University Press |
Total Pages | : 297 |
Release | : 2019-01-31 |
Genre | : Mathematics |
ISBN | : 1107184541 |
Graduate text covering the theory of Hardy spaces from its origins to the present, with concrete applications and solved exercises.
Author | : Yinqin Li |
Publisher | : Springer Nature |
Total Pages | : 663 |
Release | : 2023-02-14 |
Genre | : Mathematics |
ISBN | : 9811967881 |
The real-variable theory of function spaces has always been at the core of harmonic analysis. In particular, the real-variable theory of the Hardy space is a fundamental tool of harmonic analysis, with applications and connections to complex analysis, partial differential equations, and functional analysis. This book is devoted to exploring properties of generalized Herz spaces and establishing a complete real-variable theory of Hardy spaces associated with local and global generalized Herz spaces via a totally fresh perspective. This means that the authors view these generalized Herz spaces as special cases of ball quasi-Banach function spaces. In this book, the authors first give some basic properties of generalized Herz spaces and obtain the boundedness and the compactness characterizations of commutators on them. Then the authors introduce the associated Herz–Hardy spaces, localized Herz–Hardy spaces, and weak Herz–Hardy spaces, and develop a complete real-variable theory of these Herz–Hardy spaces, including their various maximal function, atomic, molecular as well as various Littlewood–Paley function characterizations. As applications, the authors establish the boundedness of some important operators arising from harmonic analysis on these Herz–Hardy spaces. Finally, the inhomogeneous Herz–Hardy spaces and their complete real-variable theory are also investigated. With the fresh perspective and the improved conclusions on the real-variable theory of Hardy spaces associated with ball quasi-Banach function spaces, all the obtained results of this book are new and their related exponents are sharp. This book will be appealing to researchers and graduate students who are interested in function spaces and their applications.
Author | : Akihito Uchiyama |
Publisher | : Springer Science & Business Media |
Total Pages | : 328 |
Release | : 2001-07-01 |
Genre | : Mathematics |
ISBN | : 9784431703198 |
Uchiyama's decomposition of BMO functions is considered the "Mount Everest of Hardy space theory". This book is based on the draft, which the author completed before his sudden death in 1997. Nowadays, his contributions are extremely influential in various fields of analysis, leading to further breakthroughs.
Author | : Javad Mashreghi |
Publisher | : Cambridge University Press |
Total Pages | : 385 |
Release | : 2009-03-19 |
Genre | : Mathematics |
ISBN | : 0521517680 |
This self-contained text provides an introduction to a wide range of representation theorems and provides a complete description of the representation theorems with direct proofs for both classes of Hardy spaces: Hardy spaces of the open unit disc and Hardy spaces of the upper half plane.
Author | : Anton Baranov |
Publisher | : Birkhäuser |
Total Pages | : 477 |
Release | : 2018-03-28 |
Genre | : Mathematics |
ISBN | : 3319590782 |
Written in honor of Victor Havin (1933–2015), this volume presents a collection of surveys and original papers on harmonic and complex analysis, function spaces and related topics, authored by internationally recognized experts in the fields. It also features an illustrated scientific biography of Victor Havin, one of the leading analysts of the second half of the 20th century and founder of the Saint Petersburg Analysis Seminar. A complete list of his publications, as well as his public speech "Mathematics as a source of certainty and uncertainty", presented at the Doctor Honoris Causa ceremony at Linköping University, are also included.
Author | : Ruben A. Martinez-Avendano |
Publisher | : Springer Science & Business Media |
Total Pages | : 230 |
Release | : 2007-03-12 |
Genre | : Mathematics |
ISBN | : 0387485783 |
This book offers an elementary and engaging introduction to operator theory on the Hardy-Hilbert space. It provides a firm foundation for the study of all spaces of analytic functions and of the operators on them. Blending techniques from "soft" and "hard" analysis, the book contains clear and beautiful proofs. There are numerous exercises at the end of each chapter, along with a brief guide for further study which includes references to applications to topics in engineering.
Author | : Joseph A. Cima |
Publisher | : American Mathematical Soc. |
Total Pages | : 215 |
Release | : 2000 |
Genre | : Mathematics |
ISBN | : 0821820834 |
Shift operators on Hilbert spaces of analytic functions play an important role in the study of bounded linear operators on Hilbert spaces since they often serve as models for various classes of linear operators. For example, "parts" of direct sums of the backward shift operator on the classical Hardy space H2 model certain types of contraction operators and potentially have connections to understanding the invariant subspaces of a general linear operator. This book is a thorough treatment of the characterization of the backward shift invariant subspaces of the well-known Hardy spaces H{p}. The characterization of the backward shift invariant subspaces of H{p} for 1
Author | : Steven G. Krantz |
Publisher | : Springer Nature |
Total Pages | : 257 |
Release | : 2023-02-09 |
Genre | : Mathematics |
ISBN | : 303121952X |
The book The E. M. Stein Lectures on Hardy Spaces is based on a graduate course on real variable Hardy spaces which was given by E.M. Stein at Princeton University in the academic year 1973-1974. Stein, along with C. Fefferman and G. Weiss, pioneered this subject area, removing the theory of Hardy spaces from its traditional dependence on complex variables, and to reveal its real-variable underpinnings. This book is based on Steven G. Krantz’s notes from the course given by Stein. The text builds on Fefferman's theorem that BMO is the dual of the Hardy space. Using maximal functions, singular integrals, and related ideas, Stein offers many new characterizations of the Hardy spaces. The result is a rich tapestry of ideas that develops the theory of singular integrals to a new level. The final chapter describes the major developments since 1974. This monograph is of broad interest to graduate students and researchers in mathematical analysis. Prerequisites for the book include a solid understanding of real variable theory and complex variable theory. A basic knowledge of functional analysis would also be useful.
Author | : Paul Koosis |
Publisher | : Cambridge University Press |
Total Pages | : 316 |
Release | : 1998 |
Genre | : Mathematics |
ISBN | : 0521455219 |
The first edition of this well known book was noted for its clear and accessible exposition of the basic theory of Hardy spaces from the concrete point of view (in the unit circle and the half plane). The intention was to give the reader, assumed to know basic real and complex variable theory and a little functional analysis, a secure foothold in the basic theory, and to understand its applications in other areas. For this reason, emphasis is placed on methods and the ideas behind them rather than on the accumulation of as many results as possible. The second edition retains that intention, but the coverage has been extended. The author has included two appendices by V. P. Havin, on Peter Jones' interpolation formula, and Havin's own proof of the weak sequential completeness of L1/H1(0); in addition, numerous amendments, additions and corrections have been made throughout.
Author | : Ryan Alvarado |
Publisher | : Springer |
Total Pages | : 491 |
Release | : 2015-06-09 |
Genre | : Mathematics |
ISBN | : 3319181327 |
Systematically constructing an optimal theory, this monograph develops and explores several approaches to Hardy spaces in the setting of Alhlfors-regular quasi-metric spaces. The text is divided into two main parts, with the first part providing atomic, molecular, and grand maximal function characterizations of Hardy spaces and formulates sharp versions of basic analytical tools for quasi-metric spaces, such as a Lebesgue differentiation theorem with minimal demands on the underlying measure, a maximally smooth approximation to the identity and a Calderon-Zygmund decomposition for distributions. These results are of independent interest. The second part establishes very general criteria guaranteeing that a linear operator acts continuously from a Hardy space into a topological vector space, emphasizing the role of the action of the operator on atoms. Applications include the solvability of the Dirichlet problem for elliptic systems in the upper-half space with boundary data from Hardy spaces. The tools established in the first part are then used to develop a sharp theory of Besov and Triebel-Lizorkin spaces in Ahlfors-regular quasi-metric spaces. The monograph is largely self-contained and is intended for mathematicians, graduate students and professionals with a mathematical background who are interested in the interplay between analysis and geometry.