Basic Physiology for Anaesthetists

Basic Physiology for Anaesthetists
Author: David Chambers
Publisher: Cambridge University Press
Total Pages: 469
Release: 2019-07-25
Genre: Medical
ISBN: 1108463991

Easily understood, up-to-date and clinically relevant, this book provides junior anaesthetists with an essential physiology resource.

Current Catalog

Current Catalog
Author: National Library of Medicine (U.S.)
Publisher:
Total Pages: 1712
Release:
Genre: Medicine
ISBN:

First multi-year cumulation covers six years: 1965-70.

The Respiratory System

The Respiratory System
Author: Andrew Davies
Publisher: Elsevier Health Sciences
Total Pages: 180
Release: 2014-02-03
Genre: Medical
ISBN: 0702050725

This is an integrated textbook on the respiratory system, covering the anatomy, physiology and biochemistry of the system, all presented in a clinically relevant context appropriate for the first two years of the medical student course. - One of the seven volumes in the Systems of the Body series. - Concise text covers the core anatomy, physiology and biochemistry in an integrated manner as required by system- and problem-based medical courses. - The basic science is presented in the clinical context in a way appropriate for the early part of the medical course. - There is a linked website providing self-assessment material ideal for examination preparation.

Pediatric and Neonatal Mechanical Ventilation

Pediatric and Neonatal Mechanical Ventilation
Author: Peter C. Rimensberger
Publisher: Springer
Total Pages: 1584
Release: 2014-11-12
Genre: Medical
ISBN: 3642012191

Written by outstanding authorities from all over the world, this comprehensive new textbook on pediatric and neonatal ventilation puts the focus on the effective delivery of respiratory support to children, infants and newborns. In the early chapters, developmental issues concerning the respiratory system are considered, physiological and mechanical principles are introduced and airway management and conventional and alternative ventilation techniques are discussed. Thereafter, the rational use of mechanical ventilation in various pediatric and neonatal pathologies is explained, with the emphasis on a practical step-by-step approach. Respiratory monitoring and safety issues in ventilated patients are considered in detail, and many other topics of interest to the bedside clinician are covered, including the ethics of withdrawal of respiratory support and educational issues. Throughout, the text is complemented by numerous illustrations and key information is clearly summarized in tables and lists.

How Tobacco Smoke Causes Disease

How Tobacco Smoke Causes Disease
Author: United States. Public Health Service. Office of the Surgeon General
Publisher:
Total Pages: 728
Release: 2010
Genre: Government publications
ISBN:

This report considers the biological and behavioral mechanisms that may underlie the pathogenicity of tobacco smoke. Many Surgeon General's reports have considered research findings on mechanisms in assessing the biological plausibility of associations observed in epidemiologic studies. Mechanisms of disease are important because they may provide plausibility, which is one of the guideline criteria for assessing evidence on causation. This report specifically reviews the evidence on the potential mechanisms by which smoking causes diseases and considers whether a mechanism is likely to be operative in the production of human disease by tobacco smoke. This evidence is relevant to understanding how smoking causes disease, to identifying those who may be particularly susceptible, and to assessing the potential risks of tobacco products.

Antimicrobial Resistance

Antimicrobial Resistance
Author: Donald L. Jungkind
Publisher: Springer Science & Business Media
Total Pages: 247
Release: 2013-06-29
Genre: Medical
ISBN: 1475792034

Development and Implications of Antimicrobial Resistance One of the most ominous trends in the field of antimicrobial chemotherapy over the past decade has been the increasing pace of development of antimicrobial resistance among microbial pathogens. The hypothesis that man can discover a magic bullet to always cure a particular infection has proved false. Physicians are now seeing and treating patients for which there are few therapeutic alternatives, and in some cases, none at all. Until recently there was little concern that physicians might be losing the war in our ability to compete with the evolving resistance patterns of microbial pathogens. Now the general public is very aware of the threat to them if they become infected, thanks to cover story articles in major magazines such as Time, Newsweek, newspapers, and other news sources. Antimicrobial resistance is not a novel problem. Shortly after the widespread introduction of penicillin in the early 1940s, the first strains of penicillin-resistant staphylococci were described. Today it is an uncommon event for a clinical laboratory to isolate an S. aureus that is sensitive to penicillin. Other gram-positive strains of bacteria have become resistant, including the exquisitely sensitive Streptococcus pneumoniae. Sensitivity to vancomycin was once so uniform that it was used in routine clinical laboratories as a surrogate marker for whether an organism should be classified as a gram-positive. That criterion can no longer be relied upon because of emerging resistance among some species. Gram-negative bacteria, viruses, fungi, and parasites all have succeeded in developing resistance.