The Fourier Transform and Its Applications
Author | : Ronald Newbold Bracewell |
Publisher | : |
Total Pages | : |
Release | : 1978 |
Genre | : Fourier transformations |
ISBN | : |
Download Handbook Of Fourier Analysis Its Applications full books in PDF, epub, and Kindle. Read online free Handbook Of Fourier Analysis Its Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ronald Newbold Bracewell |
Publisher | : |
Total Pages | : |
Release | : 1978 |
Genre | : Fourier transformations |
ISBN | : |
Author | : Brad G. Osgood |
Publisher | : American Mathematical Soc. |
Total Pages | : 713 |
Release | : 2019-01-18 |
Genre | : Mathematics |
ISBN | : 1470441918 |
This book is derived from lecture notes for a course on Fourier analysis for engineering and science students at the advanced undergraduate or beginning graduate level. Beyond teaching specific topics and techniques—all of which are important in many areas of engineering and science—the author's goal is to help engineering and science students cultivate more advanced mathematical know-how and increase confidence in learning and using mathematics, as well as appreciate the coherence of the subject. He promises the readers a little magic on every page. The section headings are all recognizable to mathematicians, but the arrangement and emphasis are directed toward students from other disciplines. The material also serves as a foundation for advanced courses in signal processing and imaging. There are over 200 problems, many of which are oriented to applications, and a number use standard software. An unusual feature for courses meant for engineers is a more detailed and accessible treatment of distributions and the generalized Fourier transform. There is also more coverage of higher-dimensional phenomena than is found in most books at this level.
Author | : John Francis James |
Publisher | : Cambridge University Press |
Total Pages | : 156 |
Release | : 2002-09-19 |
Genre | : Mathematics |
ISBN | : 9780521004282 |
Fourier transform theory is of central importance in a vast range of applications in physical science, engineering, and applied mathematics. This new edition of a successful student text provides a concise introduction to the theory and practice of Fourier transforms, using qualitative arguments wherever possible and avoiding unnecessary mathematics. After a brief description of the basic ideas and theorems, the power of the technique is then illustrated by referring to particular applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of computer-aided tomography (CAT-scanning). The final chapter discusses digital methods, with particular attention to the fast Fourier transform. Throughout, discussion of these applications is reinforced by the inclusion of worked examples. The book assumes no previous knowledge of the subject, and will be invaluable to students of physics, electrical and electronic engineering, and computer science.
Author | : Robert J. Marks |
Publisher | : Oxford University Press |
Total Pages | : 799 |
Release | : 2009-01-08 |
Genre | : Mathematics |
ISBN | : 0195335929 |
This practical, applications-based professional handbook comprehensively covers the theory and applications of Fourier Analysis, spanning topics from engineering mathematics, signal processing and related multidimensional transform theory, and quantum physics to elementary deterministic finance and even the foundations of western music theory.
Author | : Robert J Marks II |
Publisher | : Oxford University Press |
Total Pages | : 799 |
Release | : 2009-01-08 |
Genre | : Technology & Engineering |
ISBN | : 0198044305 |
Fourier analysis has many scientific applications - in physics, number theory, combinatorics, signal processing, probability theory, statistics, option pricing, cryptography, acoustics, oceanography, optics and diffraction, geometry, and other areas. In signal processing and related fields, Fourier analysis is typically thought of as decomposing a signal into its component frequencies and their amplitudes. This practical, applications-based professional handbook comprehensively covers the theory and applications of Fourier Analysis, spanning topics from engineering mathematics, signal processing and related multidimensional transform theory, and quantum physics to elementary deterministic finance and even the foundations of western music theory. As a definitive text on Fourier Analysis, Handbook of Fourier Analysis and Its Applications is meant to replace several less comprehensive volumes on the subject, such as Processing of Multifimensional Signals by Alexandre Smirnov, Modern Sampling Theory by John J. Benedetto and Paulo J.S.G. Ferreira, Vector Space Projections by Henry Stark and Yongyi Yang and Fourier Analysis and Imaging by Ronald N. Bracewell. In addition to being primarily used as a professional handbook, it includes sample problems and their solutions at the end of each section and thus serves as a textbook for advanced undergraduate students and beginning graduate students in courses such as: Multidimensional Signals and Systems, Signal Analysis, Introduction to Shannon Sampling and Interpolation Theory, Random Variables and Stochastic Processes, and Signals and Linear Systems.
Author | : Robert S. Strichartz |
Publisher | : World Scientific |
Total Pages | : 238 |
Release | : 2003 |
Genre | : Mathematics |
ISBN | : 9789812384300 |
This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.
Author | : J. F. James |
Publisher | : Cambridge University Press |
Total Pages | : 161 |
Release | : 2011-03-31 |
Genre | : Science |
ISBN | : 1139493949 |
Fourier transform theory is of central importance in a vast range of applications in physical science, engineering and applied mathematics. Providing a concise introduction to the theory and practice of Fourier transforms, this book is invaluable to students of physics, electrical and electronic engineering, and computer science. After a brief description of the basic ideas and theorems, the power of the technique is illustrated through applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of Computer Axial Tomography (CAT scanning). The book concludes by discussing digital methods, with particular attention to the Fast Fourier Transform and its implementation. This new edition has been revised to include new and interesting material, such as convolution with a sinusoid, coherence, the Michelson stellar interferometer and the van Cittert–Zernike theorem, Babinet's principle and dipole arrays.
Author | : Tim Olson |
Publisher | : Birkhäuser |
Total Pages | : 310 |
Release | : 2017-11-20 |
Genre | : Mathematics |
ISBN | : 1493973932 |
The first of its kind, this focused textbook serves as a self-contained resource for teaching from scratch the fundamental mathematics of Fourier analysis and illustrating some of its most current, interesting applications, including medical imaging and radar processing. Developed by the author from extensive classroom teaching experience, it provides a breadth of theory that allows students to appreciate the utility of the subject, but at as accessible a depth as possible. With myriad applications included, this book can be adapted to a one or two semester course in Fourier Analysis or serve as the basis for independent study. Applied Fourier Analysis assumes no prior knowledge of analysis from its readers, and begins by making the transition from linear algebra to functional analysis. It goes on to cover basic Fourier series and Fourier transforms before delving into applications in sampling and interpolation theory, digital communications, radar processing, medi cal imaging, and heat and wave equations. For all applications, ample practice exercises are given throughout, with collections of more in-depth problems built up into exploratory chapter projects. Illuminating videos are available on Springer.com and Link.Springer.com that present animated visualizations of several concepts. The content of the book itself is limited to what students will need to deal with in these fields, and avoids spending undue time studying proofs or building toward more abstract concepts. The book is perhaps best suited for courses aimed at upper division undergraduates and early graduates in mathematics, electrical engineering, mechanical engineering, computer science, physics, and other natural sciences, but in general it is a highly valuable resource for introducing a broad range of students to Fourier analysis.
Author | : G. B. Folland |
Publisher | : American Mathematical Soc. |
Total Pages | : 447 |
Release | : 2009 |
Genre | : Fourier analysis |
ISBN | : 0821847902 |
This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs.
Author | : D. S.G. Pollock |
Publisher | : Elsevier |
Total Pages | : 756 |
Release | : 1999-10-26 |
Genre | : Technology & Engineering |
ISBN | : 0080507875 |
The aim of this book is to serve as a graduate text and reference in time series analysis and signal processing, two closely related subjects that are the concern of a wide range of disciplines, such as statistics, electrical engineering, mechanical engineering and physics.The book provides a CD-ROM containing codes in PASCAL and C for the computer procedures printed in the book. It also furnishes a complete program devoted to the statistical analysis of time series, which will be attractive to a wide range of academics working in diverse mathematical disciplines.