Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB®

Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB®
Author: Raymond C. Rumpf
Publisher: Artech House
Total Pages: 350
Release: 2022-01-31
Genre: Technology & Engineering
ISBN: 1630819271

This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.

Nonlinear Photonics Devices

Nonlinear Photonics Devices
Author: Luigi Sirleto
Publisher: MDPI
Total Pages: 212
Release: 2021-01-11
Genre: Mathematics
ISBN: 3039437216

The first nonlinear optical effect was observed in the 19th century by John Kerr. Nonlinear optics, however, started to grow up only after the invention of the laser, when intense light sources became easily available. The seminal studies by Peter Franken and Nicolaas Bloembergen, in the 1960s, paved the way for the development of today’s nonlinear photonics, the field of research that encompasses all the studies, designs, and implementations of nonlinear optical devices that can be used for the generation, communication, and processing of information. This field has attracted significant attention, partly due to the great potential of exploiting the optical nonlinearities of new or advanced materials to induce new phenomena and achieve new functions. According to Clarivate Web of Science, almost 200,000 papers were published that refer to the topic “nonlinear optic*”. Over 36,000 papers were published in the last four years (2015–2018) with the same keyword, and over 17,000 used the keyword “nonlinear photonic*”. The present Special Issue of Micromachines aims at reviewing the current state of the art and presenting perspectives of further development. Fundamental and applicative aspects are considered, with special attention paid to hot topics that may lead to technological and scientific breakthroughs.

Topological Insulators

Topological Insulators
Author: Shun-Qing Shen
Publisher: Springer Science & Business Media
Total Pages: 234
Release: 2013-01-11
Genre: Technology & Engineering
ISBN: 364232858X

Topological insulators are insulating in the bulk, but process metallic states present around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, the first of its kind on topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological insulators and related areas. Shun-Qing Shen is a Professor at the Department of Physics, the University of Hong Kong, China.

Photonic Crystal Metasurface Optoelectronics

Photonic Crystal Metasurface Optoelectronics
Author:
Publisher: Academic Press
Total Pages: 250
Release: 2019-07-10
Genre: Science
ISBN: 0128175435

Photonic Crystal Metasurface Optoelectronics, Volume 101, covers an emerging area of nanophotonics that represents a new range of optoelectronic devices based on free-space coupled photonic crystal structures and dielectric metasurfaces. Sections in this new release include Free-space coupled nanophotonic platforms, Fano resonances in nanophotonics, Fano resonances in photonic crystal slabs, Transition from photonic crystals to dielectric metamaterials, Photonic crystals for absorption control and energy applications, Photonic crystal membrane reflector VCSELs, Fano resonance filters and modulators, and Fano resonance photonic crystal sensors. - Presents the latest in an emerging area of research with great potentials for research and commercialization - Includes sections written by world leading researchers in the field

Fano Resonances in Optics and Microwaves

Fano Resonances in Optics and Microwaves
Author: Eugene Kamenetskii
Publisher: Springer
Total Pages: 592
Release: 2018-11-20
Genre: Science
ISBN: 3319997319

This book discusses the development of Fano-based techniques and reveals the characteristic properties of various wave processes by studying interference phenomena. It explains that the interaction of discrete (localized) states with a continuum of propagation modes leads to Fano interference effects in transmission, and explores novel coherent effects such as bound states in the continuum accompanied by collapse of Fano resonance. Originating in atomic physics, Fano resonances have become one of the most appealing phenomena of wave scattering in optics, microwaves, and terahertz techniques. The generation of extremely strong and confined fields at a deep subwavelength scale, far beyond the diffraction limit, plays a central role in modern plasmonics, magnonics, and in photonic and metamaterial structures. Fano resonance effects take advantage of the coupling of these bound states with a continuum of radiative electromagnetic waves. With their unique physical properties and unusual combination of classical and quantum structures, Fano resonances have an application potential in a wide range of fields, from telecommunication to ultrasensitive biosensing, medical instrumentation and data storage. Including contributions by international experts and covering the essential aspects of Fano-resonance effects, including theory, modeling and design, proven and potential applications in practical devices, fabrication, characterization and measurement, this book enables readers to acquire the multifaceted understanding required for these multidisciplinary challenges.

Fundamentals of Photonics

Fundamentals of Photonics
Author: Bahaa E. A. Saleh
Publisher: Wiley-Interscience
Total Pages: 1014
Release: 1991-08-29
Genre: Photography
ISBN:

In recent years, photonics has found increasing applications in such areas as communications, signal processing, computing, sensing, display, printing, and energy transport. Now, Fundamentals of Photonics is the first self-contained introductory-level textbook to offer a thorough survey of this rapidly expanding area of engineering and applied physics. Featuring a logical blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of light with matter, and the theory of semiconductor materials and their optical properties. Presented at increasing levels of complexity, these sections serve as building blocks for the treatment of more advanced topics, such as Fourier optics and holography, guidedwave and fiber optics, photon sources and detectors, electro-optic and acousto-optic devices, nonlinear optical devices, fiber-optic communications, and photonic switching and computing. Included are such vital topics as: Generation of coherent light by lasers, and incoherent light by luminescence sources such as light-emitting diodes Transmission of light through optical components (lenses, apertures, and imaging systems), waveguides, and fibers Modulation, switching, and scanning of light through the use of electrically, acoustically, and optically controlled devices Amplification and frequency conversion of light by the use of wave interactions in nonlinear materials Detection of light by means of semiconductor photodetectors Each chapter contains summaries, highlighted equations, problem sets and exercises, and selected reading lists. Examples of real systems are included to emphasize the concepts governing applications of current interest, and appendices summarize the properties of one- and two-dimensional Fourier transforms, linear-systems theory, and modes of linear systems. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Photonic Devices

Photonic Devices
Author: Jia-ming Liu
Publisher: Cambridge University Press
Total Pages: 1108
Release: 2009-06-11
Genre: Technology & Engineering
ISBN: 9781139441148

Photonic devices lie at the heart of the communications revolution, and have become a large and important part of the electronic engineering field, so much so that many colleges now treat this as a subject in its own right. With this in mind, the author has put together a unique textbook covering every major photonic device, and striking a careful balance between theoretical and practical concepts. The book assumes a basic knowledge of optics, semiconductors and electromagnetic waves. Many of the key background concepts are reviewed in the first chapter. Devices covered include optical fibers, couplers, electro-optic devices, magneto-optic devices, lasers and photodetectors. Problems are included at the end of each chapter and a solutions set is available. The book is ideal for senior undergraduate and graduate courses, but being device driven it is also an excellent engineers' reference.