LRFD Guide Specifications for the Design of Pedestrian Bridges
Author | : American Association of State Highway and Transportation Officials |
Publisher | : AASHTO |
Total Pages | : 38 |
Release | : 2009 |
Genre | : Bridges |
ISBN | : 1560514698 |
Download Guide Specifications For Design Of Pedestrian Bridges full books in PDF, epub, and Kindle. Read online free Guide Specifications For Design Of Pedestrian Bridges ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : American Association of State Highway and Transportation Officials |
Publisher | : AASHTO |
Total Pages | : 38 |
Release | : 2009 |
Genre | : Bridges |
ISBN | : 1560514698 |
Author | : American Association of State Highway and Transportation Officials |
Publisher | : AASHTO |
Total Pages | : 15 |
Release | : 2008 |
Genre | : Bridges |
ISBN | : 1560513950 |
Author | : fib Fédération internationale du béton |
Publisher | : fib Fédération internationale du béton |
Total Pages | : 168 |
Release | : 2005-01-01 |
Genre | : Technology & Engineering |
ISBN | : 9782883940727 |
The intention of fib Bulletin 32 is to present guidelines for the design of footbridges as well as bridges accommodating cyclists and bridleways (equestrian paths). The need for these guidelines comes from the fact that structural engineers designing footbridges currently have to spend considerable time and energy collecting information from numerous documents, codes and recommendations to make design decisions. There seems to be no international document dedicated solely to the design of footbridges. These guidelines attempt to provide a concentrated source of information regarding all design issues specific to footbridges. It is meant to be a 'liberal' document in the sense that it promotes new, innovative and bold yet prudent designs by sharing the experience of the authors, summarizing specifications given in codes, and presenting a collection of examples of well-designed structures or structural details from around the world. It is not intended to be an international code that specifies limits and admissible values, thus encouraging timid, conservative designs that are repetitions of approved and tested designs. Indeed, it may be the very fact that no international code exists specifically for footbridges that encourages the wide variety of footbridge designs found today. It should be noted that numerous guidelines, codes and books have been published on bridge design in general. Information given in those publications that is also applicable to footbridges is not repeated in Bulletin 32. The chapters of these guidelines all follow the same pattern: an introduction to the subject, general guidelines as well as do's and don'ts; a summary of information found in existing international codes, recommendations, experience of the authors, and built examples with comparison and comments on this information; examples. Plenty of illustrations and photographs help to visualize the themes of this work. The last chapter, 'Case Studies', contains footbridges each with a short summary of main structural data and references for further reading.
Author | : |
Publisher | : American Association of State Highway & Transportation Officials |
Total Pages | : 32 |
Release | : 1997 |
Genre | : Technology & Engineering |
ISBN | : |
Author | : Michael A. Ritter |
Publisher | : |
Total Pages | : 500 |
Release | : 2005 |
Genre | : Technology & Engineering |
ISBN | : 9781410221919 |
Timber's strength, light weight, and energy-absorbing properties furnish features desirable for bridge construction. Timber is capable of supporting short-term overloads without adverse effects. Contrary to popular belief, large wood members provide good fire resistance qualities that meet or exceed those of other materials in severe fire exposures. From an economic standpoint, wood is competitive with other materials on a first-cost basis and shows advantages when life cycle costs are compared. Timber bridges can be constructed in virtually any weather conditions, without detriment to the material. Wood is not damaged by continuous freezing and thawing and resists harmful effects of de-icing agents, which cause deterioration in other bridge materials. Timber bridges do not require special equipment for installation and can normally be constructed without highly skilled labor. They also present a natural and aesthetically pleasing appearance, particularly in natural surroundings. The misconception that wood provides a short service life has plagued timber as a construction material. Although wood is susceptible to decay or insect attack under specific conditions, it is inherently a very durable material when protected from moisture. Many covered bridges built during the 19th century have lasted over 100 years because they were protected from direct exposure to the elements. In modem applications, it is seldom practical or economical to cover bridges; however, the use of wood preservatives has extended the life of wood used in exposed bridge applications. Using modem application techniques and preservative chemicals, wood can now be effectively protected from deterioration for periods of 50 years or longer. In addition, wood treated with preservatives requires little maintenance and no painting. Another misconception about wood as a bridge material is that its use is limited to minor structures of no appreciable size. This belief is probably based on the fact that trees for commercial timber are limited in size and are normally harvested before they reach maximum size. Although tree diameter limits the size of sawn lumber, the advent of glued-laminated timber (glulam) some 40 years ago provided designers with several compensating alternatives. Glulam, which is the most widely used modem timber bridge material, is manufactured by bonding sawn lumber laminations together with waterproof structural adhesives. Thus, glulam members are virtually unlimited in depth, width, and length and can be manufactured in a wide range of shapes. Glulam provides higher design strengths than sawn lumber and provides better utilization of the available timber resource by permitting the manufacture of large wood structural elements from smaller lumber sizes. Technological advances in laminating over the past four decades have further increased the suitability and performance of wood for modern highway bridge applications.
Author | : David Arellano |
Publisher | : Springer |
Total Pages | : 363 |
Release | : 2018-05-24 |
Genre | : Science |
ISBN | : 3319789813 |
These proceedings of the EPS 2018: 5th International Conference on Geofoam Blocks in Construction Applications, held in Kyrenia, Northern Cyprus on May 9 to 11, 2018, present a collection of contributions on the state-of-the-art of research and applications relating to geofoam. Geofoam researchers, consultants, molders, contractors and practitioners from all around the globe discuss the recent developments and future trends of expanded polystyrene (EPS)-block geofoam technology and its construction applications. EPS’18 contributes to the development of geofoam applications, following on from successful conferences in Oslo (1985), Tokyo (1996), Salt Lake City (2001) and Oslo (2011). The book discusses topics including, but not limited to, current use of geofoam, design specifications, applications, new concepts, material properties, modeling and specific topics in geofoam blocks in construction applications.
Author | : Robert C. Creese |
Publisher | : DEStech Publications, Inc |
Total Pages | : 222 |
Release | : 2004 |
Genre | : Composite materials |
ISBN | : 9781932078350 |
Polymer Composites Conference series is unique in its focus on practical, current applications of polymer composites in transportation infrastructure and military research.
Author | : Yail Jimmy Kim |
Publisher | : Elsevier |
Total Pages | : 367 |
Release | : 2014-05-16 |
Genre | : Technology & Engineering |
ISBN | : 0857097016 |
Advanced composite materials for bridge structures are recognized as a promising alternative to conventional construction materials such as steel. After an introductory overview and an assessment of the characteristics of bonds between composites and quasi-brittle structures, Advanced Composites in Bridge Construction and Repair reviews the use of advanced composites in the design and construction of bridges, including damage identification and the use of large rupture strain fiber-reinforced polymer (FRP) composites. The second part of the book presents key applications of FRP composites in bridge construction and repair, including the use of all-composite superstructures for accelerated bridge construction, engineered cementitious composites for bridge decks, carbon fiber-reinforced polymer composites for cable-stayed bridges and for repair of deteriorated bridge substructures, and finally the use of FRP composites in the sustainable replacement of ageing bridge superstructures. Advanced Composites in Bridge Construction and Repair is a technical guide for engineering professionals requiring an understanding of the use of composite materials in bridge construction. - Reviews key applications of fiber-reinforced polymer (FRP) composites in bridge construction and repair - Summarizes key recent research in the suitability of advanced composite materials for bridge structures as an alternative to conventional construction materials
Author | : Wai-Fah Chen |
Publisher | : CRC Press |
Total Pages | : 574 |
Release | : 2014-01-24 |
Genre | : Technology & Engineering |
ISBN | : 1439852340 |
Over 140 experts, 14 countries, and 89 chapters are represented in the second edition of The Bridge Engineering Handbook. This extensive collection highlights bridge engineering specimens from around the world, contains detailed information on bridge engineering, and thoroughly explains the concepts and practical applications surrounding the subjec
Author | : Wai-Fah Chen |
Publisher | : CRC Press |
Total Pages | : 594 |
Release | : 2014-01-24 |
Genre | : Technology & Engineering |
ISBN | : 1439852073 |
Over 140 experts, 14 countries, and 89 chapters are represented in the second edition of The Bridge Engineering Handbook. This extensive collection highlights bridge engineering specimens from around the world, contains detailed information on bridge engineering, and thoroughly explains the concepts and practical applications surrounding the subject. Published in five books: Fundamentals, Superstructure Design, Substructure Design, Seismic Design, and Construction and Maintenance, this new edition provides numerous worked-out examples that give readers step-by-step design procedures, includes contributions by leading experts from around the world in their respective areas of bridge engineering, contains 26 completely new chapters, and updates most other chapters. It offers design concepts, specifications, and practice, as well as the various types of bridges. The text includes over 2,500 tables, charts, illustrations and photos. The book covers new, innovative, and traditional methods and practices, explores rehabilitation, retrofit, and maintenance, and examines seismic design, and building materials. The first book, Fundamentals contains 22 chapters, and covers aesthetics, planning, design specifications, structural modeling, fatigue and fracture. What’s New in the Second Edition: • Covers the basic concepts, theory and special topics of bridge engineering • Includes seven new chapters: Finite Element Method, High Speed Railway Bridges, Concrete Design, Steel Design, Structural Performance Indicators for Bridges, High Performance Steel, and Design and Damage Evaluation Methods for Reinforced Concrete Beams under Impact Loading • Provides substantial updates to existing chapters, including Conceptual Design, Bridge Aesthetics: Achieving Structural Art in Bridge Design, and Application of Fiber Reinforced Polymers in Bridges This text is an ideal reference for practicing bridge engineers and consultants (design, construction, maintenance), and can also be used as a reference for students in bridge engineering courses.