Theory and Analysis of Elastic Plates and Shells, Second Edition

Theory and Analysis of Elastic Plates and Shells, Second Edition
Author: J. N. Reddy
Publisher: CRC Press
Total Pages: 568
Release: 1999-02-10
Genre: Technology & Engineering
ISBN: 9781560327059

This text presents a complete treatment of the theory and analysis of elastic plates. It provides detailed coverage of classic and shear deformation plate theories and their solutions by analytical as well as numerical methods for bending, buckling and natural vibrations. Analytical solutions are based on the Navier and Levy solution method, and numerical solutions are based on the Rayleigh-Ritz methods and finite element method. The author address a range of topics, including basic equations of elasticity, virtual work and energy principles, cylindrical bending of plates, rectangular plates and an introduction to the finite element method with applications to plates.

Theories and Applications of Plate Analysis

Theories and Applications of Plate Analysis
Author: Rudolph Szilard
Publisher: John Wiley & Sons
Total Pages: 1062
Release: 2004-01-02
Genre: Technology & Engineering
ISBN: 9780471429890

This book by a renowned structural engineer offers comprehensive coverage of both static and dynamic analysis of plate behavior, including classical, numerical, and engineering solutions. It contains more than 100 worked examples showing step by step how the various types of analysis are performed.

Analysis of Structures on Elastic Foundation

Analysis of Structures on Elastic Foundation
Author: Levon G. Petrosian
Publisher: CRC Press
Total Pages: 377
Release: 2022-06-13
Genre: Technology & Engineering
ISBN: 1000585719

This book is devoted to the static and dynamic analysis of structures on elastic foundation. Through comprehensive analysis, the book shows analytical and mechanical relationships among classic and modern methods of solving boundary value problems. The book provides a wide spectrum of applications of modern techniques and methods of calculation of static and dynamic problems of engineering design. It pursues both methodological and practical purposes, and the accounting of all methods is accompanied by solutions of the specific problems, which are not merely illustrative in nature but may represent an independent interest in the study of various technical issues. Two special features of the book are the extensive use of the generalized functions for describing the impacts on structures and the substantiations of the methods of the apparatus of the generalized functions. The book illustrates modern methods for solving boundary-value problems of structural mechanics and soil mechanics based on the application of boundary equations. The book presents the philosophy of boundary equations and boundary element methods. A number of examples of solving different problems of static and dynamic calculation of structures on an elastic foundation are given according to the methods presented in the book. Introduces a general approach to the method of integral transforms based on the spectral theory of the linear differential operators. The Spectral Method of Boundary Element (SMBE) is developed based on using integral transforms with an orthogonal kernel in the extended domain. Presents a new, versatile foundation model with a number of advantages over the ground-based models currently used in practical calculations. Provides new transforms which will aid in solving various problems relevant to bars, beams, plates, and shells in particular for the structures on elastic foundation. Examines the methods of solving boundary-value problems typical for structural mechanics and related fields.

A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells

A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells
Author: Hui-Shen Shen
Publisher: John Wiley & Sons
Total Pages: 368
Release: 2013-07-03
Genre: Technology & Engineering
ISBN: 1118649915

The capability to predict the nonlinear response of beams, plates and shells when subjected to thermal and mechanical loads is of prime interest to structural analysis. In fact, many structures are subjected to high load levels that may result in nonlinear load-deflection relationships due to large deformations. One of the important problems deserving special attention is the study of their nonlinear response to large deflection, postbuckling and nonlinear vibration. A two-step perturbation method is firstly proposed by Shen and Zhang (1988) for postbuckling analysis of isotropic plates. This approach gives parametrical analytical expressions of the variables in the postbuckling range and has been generalized to other plate postbuckling situations. This approach is then successfully used in solving many nonlinear bending, postbuckling, and nonlinear vibration problems of composite laminated plates and shells, in particular for some difficult tasks, for example, shear deformable plates with four free edges resting on elastic foundations, contact postbuckling of laminated plates and shells, nonlinear vibration of anisotropic cylindrical shells. This approach may be found its more extensive applications in nonlinear analysis of nano-scale structures. Concentrates on three types of nonlinear analyses: vibration, bending and postbuckling Presents not only the theoretical aspect of the techniques, but also engineering applications of the method A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells is an original and unique technique devoted entirely to solve geometrically nonlinear problems of beams, plates and shells. It is ideal for academics, researchers and postgraduates in mechanical engineering, civil engineering and aeronautical engineering.