Topics in Gravitational Dynamics

Topics in Gravitational Dynamics
Author: Daniel Benest
Publisher: Springer
Total Pages: 419
Release: 2007-12-14
Genre: Science
ISBN: 3540729844

This set of lectures collects surveys of open problems in celestial dynamics and dynamical astronomy applied to solar, extra-solar and galactic systems. The discovery and thus the possibility to study many new extra-solar planetary systems have spurred new developments in the field and enabled the testing and enlargement of the domains of validity of theoretical predictions through the Nekhoroshev theorem.

Galactic Dynamics

Galactic Dynamics
Author: James Binney
Publisher: Princeton University Press
Total Pages: 902
Release: 2011-10-30
Genre: Science
ISBN: 1400828724

Since it was first published in 1987, Galactic Dynamics has become the most widely used advanced textbook on the structure and dynamics of galaxies and one of the most cited references in astrophysics. Now, in this extensively revised and updated edition, James Binney and Scott Tremaine describe the dramatic recent advances in this subject, making Galactic Dynamics the most authoritative introduction to galactic astrophysics available to advanced undergraduate students, graduate students, and researchers. Every part of the book has been thoroughly overhauled, and many sections have been completely rewritten. Many new topics are covered, including N-body simulation methods, black holes in stellar systems, linear stability and response theory, and galaxy formation in the cosmological context. Binney and Tremaine, two of the world's leading astrophysicists, use the tools of theoretical physics to describe how galaxies and other stellar systems work, succinctly and lucidly explaining theoretical principles and their applications to observational phenomena. They provide readers with an understanding of stellar dynamics at the level needed to reach the frontiers of the subject. This new edition of the classic text is the definitive introduction to the field. ? A complete revision and update of one of the most cited references in astrophysics Provides a comprehensive description of the dynamical structure and evolution of galaxies and other stellar systems Serves as both a graduate textbook and a resource for researchers Includes 20 color illustrations, 205 figures, and more than 200 problems Covers the gravitational N-body problem, hierarchical galaxy formation, galaxy mergers, dark matter, spiral structure, numerical simulations, orbits and chaos, equilibrium and stability of stellar systems, evolution of binary stars and star clusters, and much more Companion volume to Galactic Astronomy, the definitive book on the phenomenology of galaxies and star clusters

The Distribution of the Galaxies

The Distribution of the Galaxies
Author: William C. Saslaw
Publisher: Cambridge University Press
Total Pages: 524
Release: 2000
Genre: Science
ISBN: 0521394260

This topical volume examines one of the leading problems in astronomy - how galaxies cluster in our Universe. This book, first published in 2000, describes gravitational theory, computer simulations and observations related to galaxy distribution functions. It embeds distribution functions in a broader astronomical context, including other exciting contemporary topics such as correlation functions, fractals, bound clusters, topology, percolation and minimal spanning trees. Key results are derived and the necessary gravitational physics provided to ensure the book is self-contained. Throughout the book, theory, computer simulation and observation are carefully interwoven and critically compared. The book also shows how future observations can test the theoretical models for the evolution of galaxy clustering at early times in our Universe. This clear and authoritative volume is written at a level suitable for graduate students, and will be of key interest to astronomers, cosmologists, physicists and applied statisticians.

Fundamentals of Galaxy Dynamics, Formation and Evolution

Fundamentals of Galaxy Dynamics, Formation and Evolution
Author: Ignacio Ferreras
Publisher: UCL Press
Total Pages: 200
Release: 2019-04-02
Genre: Science
ISBN: 1911307614

Galaxies, along with their underlying dark matter halos, constitute the building blocks of structure in the Universe. Of all fundamental forces, gravity is the dominant one that drives the evolution of structures from small density seeds at early times to the galaxies we see today. The interactions among myriads of stars, or dark matter particles, in a gravitating structure produce a system with fascinating connotations to thermodynamics, with some analogies and some fundamental differences. Ignacio Ferreras presents a concise introduction to extragalactic astrophysics, with emphasis on stellar dynamics, and the growth of density fluctuations in an expanding Universe. Additional chapters are devoted to smaller systems (stellar clusters) and larger ones (galaxy clusters). Fundamentals of Galaxy Dynamics, Formation and Evolution is written for advanced undergraduates and beginning postgraduate students, providing a useful tool to get up to speed in a starting research career. Some of the derivations for the most important results are presented in detail to enable students appreciate the beauty of maths as a tool to understand the workings of galaxies. Each chapter includes a set of problems to help the student advance with the material.

Dynamics and Evolution of Galactic Nuclei

Dynamics and Evolution of Galactic Nuclei
Author: David Merritt
Publisher: Princeton University Press
Total Pages: 567
Release: 2013-07-21
Genre: Science
ISBN: 1400846129

Deep within galaxies like the Milky Way, astronomers have found a fascinating legacy of Einstein's general theory of relativity: supermassive black holes. Connected to the evolution of the galaxies that contain these black holes, galactic nuclei are the sites of uniquely energetic events, including quasars, stellar tidal disruptions, and the generation of gravitational waves. This textbook is the first comprehensive introduction to dynamical processes occurring in the vicinity of supermassive black holes in their galactic environment. Filling a critical gap, it is an authoritative resource for astrophysics and physics graduate students, and researchers focusing on galactic nuclei, the astrophysics of massive black holes, galactic dynamics, and gravitational wave detection. It is an ideal text for an advanced graduate-level course on galactic nuclei and as supplementary reading in graduate-level courses on high-energy astrophysics and galactic dynamics. David Merritt summarizes the theoretical work of the last three decades on the evolution of galactic nuclei, the formation of massive black holes, and the interaction between black holes and stars. He explores in depth such important topics as observations of galactic nuclei, dynamical models, weighing black holes, motion near supermassive black holes, evolution of nuclei due to gravitational encounters, loss cone theory, and binary supermassive black holes. Self-contained and up-to-date, the textbook includes a summary of the current literature and previously unpublished work by the author. For researchers working on active galactic nuclei, galaxy evolution, and the generation of gravitational waves, this book will be an essential resource.

Gravitational Collapse and Spacetime Singularities

Gravitational Collapse and Spacetime Singularities
Author: Pankaj S. Joshi
Publisher: Cambridge University Press
Total Pages: 0
Release: 2012-09-20
Genre: Science
ISBN: 9781107405363

Physical phenomena in astrophysics and cosmology involve gravitational collapse in a fundamental way. The final fate of a massive star when it collapses under its own gravity at the end of its life cycle is one of the most important questions in gravitation theory and relativistic astrophysics, and is the foundation of black hole physics. General relativity predicts that continual gravitational collapse gives rise to a space-time singularity. Quantum gravity may take over in such regimes to resolve the classical space-time singularity. This book investigates these issues, and shows how the visible ultra-dense regions arise naturally and generically as an outcome of dynamical gravitational collapse. It will be of interest to graduate students and academic researchers in gravitation physics, fundamental physics, astrophysics, and cosmology. It includes a detailed review of research into gravitational collapse, and several examples of collapse models are investigated in detail.

Galactic Astronomy

Galactic Astronomy
Author: James Binney
Publisher: Princeton University Press
Total Pages: 818
Release: 2021-07-13
Genre: Science
ISBN: 0691233322

This is the definitive treatment of the phenomenology of galaxies--a clear and comprehensive volume that takes full account of the extraordinary recent advances in the field. The book supersedes the classic text Galactic Astronomy that James Binney wrote with Dimitri Mihalas, and complements Galactic Dynamics by Binney and Scott Tremaine. It will be invaluable to researchers and is accessible to any student who has a background in undergraduate physics. The book draws on observations both of our own galaxy, the Milky Way, and of external galaxies. The two sources are complementary, since the former tends to be highly detailed but difficult to interpret, while the latter is typically poorer in quality but conceptually simpler to understand. Binney and Merrifield introduce all astronomical concepts necessary to understand the properties of galaxies, including coordinate systems, magnitudes and colors, the phenomenology of stars, the theory of stellar and chemical evolution, and the measurement of astronomical distances. The book's core covers the phenomenology of external galaxies, star clusters in the Milky Way, the interstellar media of external galaxies, gas in the Milky Way, the structure and kinematics of the stellar components of the Milky Way, and the kinematics of external galaxies. Throughout, the book emphasizes the observational basis for current understanding of galactic astronomy, with references to the original literature. Offering both new information and a comprehensive view of its subject, it will be an indispensable source for professionals, as well as for graduate students and advanced undergraduates.

Gravitational Dynamics

Gravitational Dynamics
Author: Ofer Lahav
Publisher: Cambridge University Press
Total Pages: 286
Release: 1996-07-13
Genre: Science
ISBN: 9780521563277

Gravity plays a central role in the dynamics of all astrophysical systems - from stars to the Universe as a whole. This timely volume examines all aspects of gravitational dynamics - from stellar systems and galaxy disks, to the dynamics of the Local Group, large scale structures and motions, galaxy formation and general relativity. Each chapter is written by a world expert renowned for original contributions to the field. The authors are: James Binney, Roger Blandford, David Burstein, Tim de Zeeuw, George Efstathiou, Steve Gull, Nick Kaiser, J. Katz, Donald Lynden-Bell, Ruth Lynden-Bell, Douglas Lin, Jeremiah Ostriker, T. Padmanabhan, J. Papaloizou, Jim Peebles, Jim Pringle, Martin Rees, Maarteen Schmidt, Scott Tremaine and Simon White. This volume provides a broad, pedagogical introduction to gravitational dynamics for graduate students, and an up-to-date review for researchers in cosmology, astrophysics, mathematical physics and applied mathematics.

Phase Transitions in the Early Universe: Theory and Observations

Phase Transitions in the Early Universe: Theory and Observations
Author: Héctor J. De Vega
Publisher: Springer Science & Business Media
Total Pages: 618
Release: 2001-11-30
Genre: Science
ISBN: 9781402000560

A fundamental, profound review of the key issues relating to the early universe and the physical processes that occurred in it. The interplay between cosmic microwave background radiation, large scale structure, and the dark matter problem are stressed, with a central focus on the crucial issue of the phase transitions in the early universe and their observable consequences: baryon symmetry, baryogenesis and cosmological fluctuations. There is an interplay between cosmology, statistical physics and particle physics in studying these problems, both at the theoretical and the experimental / observational levels. Special contributions are devoted to primordial and astrophysical black holes and to high energy cosmic rays and neutrino astrophysics. There is also a special section devoted to the International Space Station and its scientific utilization.