Graphs With Eigenvalues Of High Multiplicity
Download Graphs With Eigenvalues Of High Multiplicity full books in PDF, epub, and Kindle. Read online free Graphs With Eigenvalues Of High Multiplicity ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Piet van Mieghem |
Publisher | : Cambridge University Press |
Total Pages | : 363 |
Release | : 2010-12-02 |
Genre | : Technology & Engineering |
ISBN | : 1139492276 |
Analyzing the behavior of complex networks is an important element in the design of new man-made structures such as communication systems and biologically engineered molecules. Because any complex network can be represented by a graph, and therefore in turn by a matrix, graph theory has become a powerful tool in the investigation of network performance. This self-contained 2010 book provides a concise introduction to the theory of graph spectra and its applications to the study of complex networks. Covering a range of types of graphs and topics important to the analysis of complex systems, this guide provides the mathematical foundation needed to understand and apply spectral insight to real-world systems. In particular, the general properties of both the adjacency and Laplacian spectrum of graphs are derived and applied to complex networks. An ideal resource for researchers and students in communications networking as well as in physics and mathematics.
Author | : Charles R. Johnson |
Publisher | : Cambridge University Press |
Total Pages | : 315 |
Release | : 2018-02-12 |
Genre | : Mathematics |
ISBN | : 110709545X |
This book investigates the influence of the graph of a symmetric matrix on the multiplicities of its eigenvalues.
Author | : Dragoš M. Cvetković |
Publisher | : |
Total Pages | : 374 |
Release | : 1980 |
Genre | : Mathematics |
ISBN | : |
The theory of graph spectra can, in a way, be considered as an attempt to utilize linear algebra including, in particular, the well-developed theory of matrices for the purposes of graph theory and its applications. to the theory of matrices; on the contrary, it has its own characteristic features and specific ways of reasoning fully justifying it to be treated as a theory in its own right.
Author | : Andries E. Brouwer |
Publisher | : Springer Science & Business Media |
Total Pages | : 254 |
Release | : 2011-12-17 |
Genre | : Mathematics |
ISBN | : 1461419395 |
This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association schemes, p-ranks of configurations and similar topics. Exercises at the end of each chapter provide practice and vary from easy yet interesting applications of the treated theory, to little excursions into related topics. Tables, references at the end of the book, an author and subject index enrich the text. Spectra of Graphs is written for researchers, teachers and graduate students interested in graph spectra. The reader is assumed to be familiar with basic linear algebra and eigenvalues, although some more advanced topics in linear algebra, like the Perron-Frobenius theorem and eigenvalue interlacing are included.
Author | : Charles R. Johnson |
Publisher | : Cambridge University Press |
Total Pages | : 315 |
Release | : 2018-02-12 |
Genre | : Mathematics |
ISBN | : 1108547036 |
The arrangement of nonzero entries of a matrix, described by the graph of the matrix, limits the possible geometric multiplicities of the eigenvalues, which are far more limited by this information than algebraic multiplicities or the numerical values of the eigenvalues. This book gives a unified development of how the graph of a symmetric matrix influences the possible multiplicities of its eigenvalues. While the theory is richest in cases where the graph is a tree, work on eigenvalues, multiplicities and graphs has provided the opportunity to identify which ideas have analogs for non-trees, and those for which trees are essential. It gathers and organizes the fundamental ideas to allow students and researchers to easily access and investigate the many interesting questions in the subject.
Author | : Dragoš Cvetković |
Publisher | : Cambridge University Press |
Total Pages | : 0 |
Release | : 2009-10-15 |
Genre | : Mathematics |
ISBN | : 9780521134088 |
This introductory text explores the theory of graph spectra: a topic with applications across a wide range of subjects, including computer science, quantum chemistry and electrical engineering. The spectra examined here are those of the adjacency matrix, the Seidel matrix, the Laplacian, the normalized Laplacian and the signless Laplacian of a finite simple graph. The underlying theme of the book is the relation between the eigenvalues and structure of a graph. Designed as an introductory text for graduate students, or anyone using the theory of graph spectra, this self-contained treatment assumes only a little knowledge of graph theory and linear algebra. The authors include many new developments in the field which arise as a result of rapidly expanding interest in the area. Exercises, spectral data and proofs of required results are also provided. The end-of-chapter notes serve as a practical guide to the extensive bibliography of over 500 items.
Author | : William L. William L. Hamilton |
Publisher | : Springer Nature |
Total Pages | : 141 |
Release | : 2022-06-01 |
Genre | : Computers |
ISBN | : 3031015886 |
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.
Author | : Xueliang Li |
Publisher | : Springer Science & Business Media |
Total Pages | : 270 |
Release | : 2012-08-10 |
Genre | : Mathematics |
ISBN | : 1461442206 |
This book is about graph energy. The authors have included many of the important results on graph energy, such as the complete solution to the conjecture on maximal energy of unicyclic graphs, the Wagner-Heuberger’s result on the energy of trees, the energy of random graphs or the approach to energy using singular values. It contains an extensive coverage of recent results and a gradual development of topics and the inclusion of complete proofs from most of the important recent results in the area. The latter fact makes it a valuable reference for researchers looking to get into the field of graph energy, further stimulating it with occasional inclusion of open problems. The book provides a comprehensive survey of all results and common proof methods obtained in this field with an extensive reference section. The book is aimed mainly towards mathematicians, both researchers and doctoral students, with interest in the field of mathematical chemistry.
Author | : Richard A. Brualdi |
Publisher | : Springer Science & Business Media |
Total Pages | : 266 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461383544 |
This IMA Volume in Mathematics and its Applications COMBINATORIAL AND GRAPH-THEORETICAL PROBLEMS IN LINEAR ALGEBRA is based on the proceedings of a workshop that was an integral part of the 1991-92 IMA program on "Applied Linear Algebra." We are grateful to Richard Brualdi, George Cybenko, Alan George, Gene Golub, Mitchell Luskin, and Paul Van Dooren for planning and implementing the year-long program. We especially thank Richard Brualdi, Shmuel Friedland, and Victor Klee for organizing this workshop and editing the proceedings. The financial support of the National Science Foundation made the workshop possible. A vner Friedman Willard Miller, Jr. PREFACE The 1991-1992 program of the Institute for Mathematics and its Applications (IMA) was Applied Linear Algebra. As part of this program, a workshop on Com binatorial and Graph-theoretical Problems in Linear Algebra was held on November 11-15, 1991. The purpose of the workshop was to bring together in an informal setting the diverse group of people who work on problems in linear algebra and matrix theory in which combinatorial or graph~theoretic analysis is a major com ponent. Many of the participants of the workshop enjoyed the hospitality of the IMA for the entire fall quarter, in which the emphasis was discrete matrix analysis.
Author | : Joel Friedman |
Publisher | : American Mathematical Soc. |
Total Pages | : 114 |
Release | : 2008 |
Genre | : Mathematics |
ISBN | : 0821842803 |
A $d$-regular graph has largest or first (adjacency matrix) eigenvalue $\lambda_1=d$. Consider for an even $d\ge 4$, a random $d$-regular graph model formed from $d/2$ uniform, independent permutations on $\{1,\ldots,n\}$. The author shows that for any $\epsilon>0$ all eigenvalues aside from $\lambda_1=d$ are bounded by $2\sqrt{d-1}\;+\epsilon$ with probability $1-O(n^{-\tau})$, where $\tau=\lceil \bigl(\sqrt{d-1}\;+1\bigr)/2 \rceil-1$. He also shows that this probability is at most $1-c/n^{\tau'}$, for a constant $c$ and a $\tau'$ that is either $\tau$ or $\tau+1$ (``more often'' $\tau$ than $\tau+1$). He proves related theorems for other models of random graphs, including models with $d$ odd.