Graphene Electrolyte Interfaces
Download Graphene Electrolyte Interfaces full books in PDF, epub, and Kindle. Read online free Graphene Electrolyte Interfaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Hualin Zhan |
Publisher | : CRC Press |
Total Pages | : 156 |
Release | : 2020-04-07 |
Genre | : Technology & Engineering |
ISBN | : 1000066789 |
Graphene–electrolyte systems are commonly found in cutting-edge research on electrochemistry, biotechnology, nanoelectronics, energy storage, materials engineering, and chemical engineering. The electrons in graphene intimately interact with ions from an electrolyte at the graphene–electrolyte interface, where the electrical or chemical properties of both graphene and electrolyte could be affected. The electronic behavior therefore determines the performance of applications in both Faradaic and non-Faradaic processes, which require intensive studies. This book systematically integrates the electronic theory and experimental techniques for both graphene and electrolytes. The theoretical sections detail the classical and quantum description of electron transport in graphene and the modern models for charges in electrolytes. The experimental sections compile common techniques for graphene growth/characterization and electrochemistry. Based on this knowledge, the final chapter reviews a few applications of graphene–electrolyte systems in biosensing, neural recording, and enhanced electronic devices, in order to inspire future developments. This multidisciplinary book is ideal for a wide audience, including physicists, chemists, biologists, electrical engineers, materials engineers, and chemical engineers.
Author | : Frances M. Ross |
Publisher | : Cambridge University Press |
Total Pages | : 529 |
Release | : 2017 |
Genre | : Science |
ISBN | : 1107116570 |
2.6.2 Electrodes for Electrochemistry
Author | : Marta Mohedano |
Publisher | : MDPI |
Total Pages | : 172 |
Release | : 2021-06-02 |
Genre | : Science |
ISBN | : 3036505520 |
Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), functionalizes surfaces, improving the mechanical, thermal, and corrosion performance of metallic substrates, along with other tailored properties (e.g., biocompatibility, catalysis, antibacterial response, self-lubrication, etc.). The extensive field of applications of this technique ranges from structural components, in particular, in the transport sector, to more advanced fields, such as bioengineering. The present Special Issue covers the latest advances in PEO‐coated light alloys for structural (Al, Mg) and biomedical applications (Ti, Mg), with 10 research papers and 1 review from leading research groups around the world.
Author | : Dr A. Pandikumar |
Publisher | : Royal Society of Chemistry |
Total Pages | : 466 |
Release | : 2021-05-05 |
Genre | : Science |
ISBN | : 1839163143 |
Disposable electrodes have been widely used as a sensing platform in electrical and electrochemical sensors owing to the possibility of quantitative detection using clinical biomarkers with high precision, sensitivity and reproducibility, which are necessary for accurate diagnosis of the health condition of an individual. This book focusses on the emerging disposable electrochemical sensors in the health sector and the advancement of analytical devices to monitor diabetic, cancer and cardiovascular patients using different nanomaterials. It discusses the upcoming strategies, advantages and the limitations of the existing devices using disposable electrodes. Uniquely, it covers in-depth knowledge of mechanistic features of various designs of screen-printing electrodes and the material aspects required of sensors developed for the healthcare field. It also looks at the portable devices using a variety of materials and the future directions for research in this area. Appealing to the health care industry, this book is aimed at academic and research institutes at both the graduate and postgraduate level. The contributors are leading experts in the field and they are providing guidance for the next decade of research in the field of disposable electrochemical biosensors.
Author | : Yasutoshi Iriyama |
Publisher | : Springer Nature |
Total Pages | : 541 |
Release | : |
Genre | : |
ISBN | : 9819760399 |
Author | : Omar Azzaroni |
Publisher | : John Wiley & Sons |
Total Pages | : 453 |
Release | : 2023-08-01 |
Genre | : Technology & Engineering |
ISBN | : 3527843388 |
Graphene Field-Effect Transistors In-depth resource on making and using graphene field effect transistors for point-of-care diagnostic devices Graphene Field-Effect Transistors focuses on the design, fabrication, characterization, and applications of graphene field effect transistors, summarizing the state-of-the-art in the field and putting forward new ideas regarding future research directions and potential applications. After a review of the unique electronic properties of graphene and the production of graphene and graphene oxide, the main part of the book is devoted to the fabrication of graphene field effect transistors and their sensing applications. Graphene Field-Effect Transistors includes information on: Electronic properties of graphene, production of graphene oxide and reduced graphene oxide, and graphene functionalization Fundamentals and fabrication of graphene field effect transistors, and nanomaterial/graphene nanostructure-based field-effect transistors Graphene field-effect transistors integrated with microfluidic platforms and flexible graphene field-effect transistors Graphene field-effect transistors for diagnostics applications, and DNA biosensors and immunosensors based on graphene field-effect transistors Graphene field-effect transistors for targeting cancer molecules, brain activity recording, bacterial detection, and detection of smell and taste Providing both fundamentals of the technology and an in-depth overview of using graphene field effect transistors for fabricating bioelectronic devices that can be applied for point-of-care diagnostics, Graphene Field-Effect Transistors is an essential reference for materials scientists, engineering scientists, laboratory medics, and biotechnologists.
Author | : Marek Kosmulski |
Publisher | : CRC Press |
Total Pages | : 1094 |
Release | : 2009-05-14 |
Genre | : Science |
ISBN | : 142005189X |
The Most Detailed Resource Available on Points of Zero ChargeWith their work growing in complexity, chemists involved with surface phenomena-related projects have outgrown the common resources available to them on points of zero charge (PZC) of oxides. Reporting on a limited number of materials in a limited number of scenarios, these resources ofte
Author | : Inamuddin |
Publisher | : John Wiley & Sons |
Total Pages | : 352 |
Release | : 2020-12-30 |
Genre | : Technology & Engineering |
ISBN | : 1119655250 |
2D Monoelements: Properties and Applications explores the challenges, research progress and future developments of the basic idea of two-dimensional monoelements, classifications, and application in field-effect transistors for sensing and biosensing. The thematic topics include investigations such as: Recent advances in phosphorene The diverse properties of two-dimensional antimonene, of graphene and its derivatives The molecular docking simulation study used to analyze the binding mechanisms of graphene oxide as a cancer drug carrier Metal-organic frameworks (MOFs)-derived carbon (graphene and carbon nanotubes) and MOF-carbon composite materials, with a special emphasis on the use of these nanostructures for energy storage devices (supercapacitors) Two-dimensional monoelements classification like graphene application in field-effect transistors for sensing and biosensing Graphene-based ternary materials as a supercapacitor electrode Rise of silicene and its applications in gas sensing
Author | : Ashutosh Tiwari |
Publisher | : John Wiley & Sons |
Total Pages | : 461 |
Release | : 2015-05-08 |
Genre | : Technology & Engineering |
ISBN | : 1118998987 |
Because of their unique properties (size, shape, and surface functions), functional materials are gaining significant attention in the areas of energy conversion and storage, sensing, electronics, photonics, and biomedicine. Within the chapters of this book written by well-known researchers, one will find the range of methods that have been developed for preparation and functionalization of organic, inorganic and hybrid structures which are the necessary building blocks for the architecture of various advanced functional materials. The book discusses these innovative methodologies and research strategies, as well as provides a comprehensive and detailed overview of the cutting-edge research on the processing, properties and technology developments of advanced functional materials and their applications. Specifically, Advanced Functional Materials: Compiles the objectives related to functional materials and provides detailed reviews of fundamentals, novel production methods, and frontiers of functional materials, including metalic oxides, conducting polymers, carbon nanotubes, discotic liquid crystalline dimers, calixarenes, crown ethers, chitosan and graphene. Discusses the production and characterization of these materials, while mentioning recent approaches developed as well as their uses and applications for sensitive chemiresistors, optical and electronic materials, solar hydrogen generation, supercapacitors, display and organic light-emitting diodes, functional adsorbents, and antimicrobial and biocompatible layer formation. This volume in the Advanced Materials Book Series includes twelve chapters divided into two main areas: Part 1: Functional Metal Oxides: Architecture, Design and Applications and Part 2: Multifunctional Hybrid Materials: Fundamentals and Frontiers
Author | : Andrew J. Wain |
Publisher | : Elsevier |
Total Pages | : 580 |
Release | : 2021-09-14 |
Genre | : Technology & Engineering |
ISBN | : 0128200561 |
Nanoscale Electrochemistry focuses on challenges and advances in electrochemical nanoscience at solid–liquid interfaces, highlighting the most prominent developments of the last decade. Nanotechnology has had a tremendous effect on the multidisciplinary field of electrochemistry, yielding new fundamental insights that have broadened our understanding of interfacial processes and stimulating new and diverse applications. The book begins with a tutorial chapter to introduce the principles of nanoscale electrochemical systems and emphasize their unique behavior compared with their macro/microscopic counterparts. Building on this, the following three chapters present analytical applications, such as sensing and electrochemical imaging, that are familiar to the traditional electrochemist but whose extension to the nanoscale is nontrivial and reveals new chemical information. The subsequent three chapters present exciting new electrochemical methodologies that are specific to the nanoscale, including "single entity"-based methods and surface-enhanced electrochemical spectroscopy. These techniques, now sufficiently mature for exposition, have paved the way for major developments in our understanding of solid–liquid interfaces and continue to push electrochemical analysis toward atomic-length scales. The final three chapters address the rich overlap between electrochemistry and nanomaterials science, highlighting notable applications in energy conversion and storage. This is an important reference for both academic and industrial researchers who are seeking to learn more about how nanoscale electrochemistry has developed in recent years. - Outlines the major applications of nanoscale electrochemistry in energy storage, spectroscopy and biology - Summarizes the major principles of nanoscale electrochemical systems, exploring how they differ from similar system types - Discusses the major challenges of electrochemical analysis at the nanoscale