Geometry With Geometry Explorer
Download Geometry With Geometry Explorer full books in PDF, epub, and Kindle. Read online free Geometry With Geometry Explorer ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Michael Hvidsten |
Publisher | : CRC Press |
Total Pages | : 532 |
Release | : 2016-12-08 |
Genre | : Mathematics |
ISBN | : 1498760988 |
Exploring Geometry, Second Edition promotes student engagement with the beautiful ideas of geometry. Every major concept is introduced in its historical context and connects the idea with real-life. A system of experimentation followed by rigorous explanation and proof is central. Exploratory projects play an integral role in this text. Students develop a better sense of how to prove a result and visualize connections between statements, making these connections real. They develop the intuition needed to conjecture a theorem and devise a proof of what they have observed. Features: Second edition of a successful textbook for the first undergraduate course Every major concept is introduced in its historical context and connects the idea with real life Focuses on experimentation Projects help enhance student learning All major software programs can be used; free software from author
Author | : Michael Hvidsten |
Publisher | : McGraw-Hill Science, Engineering & Mathematics |
Total Pages | : 0 |
Release | : 2005 |
Genre | : Geometry |
ISBN | : 9780072948639 |
Geometry with Geometry Explorer combines a discovery-based geometry text with powerful integrated geometry software. This combination allows for the deep exploration of topics that would be impossible without well-integrated technology, such as hyperbolic geometry, and encourages the kind of experimentation and self-discovery needed for students to develop a natural intuition for various topics in geometry..
Author | : Michael Hvidsten |
Publisher | : CRC Press |
Total Pages | : 538 |
Release | : 2016-12-08 |
Genre | : Mathematics |
ISBN | : 1498760821 |
Exploring Geometry, Second Edition promotes student engagement with the beautiful ideas of geometry. Every major concept is introduced in its historical context and connects the idea with real-life. A system of experimentation followed by rigorous explanation and proof is central. Exploratory projects play an integral role in this text. Students develop a better sense of how to prove a result and visualize connections between statements, making these connections real. They develop the intuition needed to conjecture a theorem and devise a proof of what they have observed. Features: Second edition of a successful textbook for the first undergraduate course Every major concept is introduced in its historical context and connects the idea with real life Focuses on experimentation Projects help enhance student learning All major software programs can be used; free software from author
Author | : Arthur T. Winfree |
Publisher | : Springer Science & Business Media |
Total Pages | : 543 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 3662224925 |
As 1 review these pages, the last of them written in Summer 1978, some retrospec tive thoughts come to mind which put the whole business into better perspective for me and might aid the prospective reader in choosing how to approach this volume. The most conspicuous thought in my mind at present is the diversity of wholly independent explorations that came upon phase singularities, in one guise or another, during the past decade. My efforts to gather the published literature during the last phases of actually writing a whole book about them were almost equally divided between libraries of Biology, Chemistry, Engineering, Mathematics, Medicine, and Physics. A lot of what 1 call "gathering " was done somewhat in anticipation in the form of cönjecture, query, and prediction based on analogy between developments in different fields. The consequence throughout 1979 was that our long-suffering publisher re peatedly had to replace such material by citation of unexpected flurries of papers giving substantive demonstration. 1 trust that the authors of these many excellent reports, and especially of those I only found too late, will forgive the brevity of allusion I feIt compelled to observe in these substitutions. A residue of loose ends is largely collected in the index under "QUERIES. " It is c1ear to me already that the materials I began to gather several years ago represented only the first flickering of what turns out to be a substantial conflagration.
Author | : Michael P. Hitchman |
Publisher | : Jones & Bartlett Learning |
Total Pages | : 255 |
Release | : 2009 |
Genre | : Mathematics |
ISBN | : 0763754579 |
The content of Geometry with an Introduction to Cosmic Topology is motivated by questions that have ignited the imagination of stargazers since antiquity. What is the shape of the universe? Does the universe have and edge? Is it infinitely big? Dr. Hitchman aims to clarify this fascinating area of mathematics. This non-Euclidean geometry text is organized intothree natural parts. Chapter 1 provides an overview including a brief history of Geometry, Surfaces, and reasons to study Non-Euclidean Geometry. Chapters 2-7 contain the core mathematical content of the text, following the ErlangenProgram, which develops geometry in terms of a space and a group of transformations on that space. Finally chapters 1 and 8 introduce (chapter 1) and explore (chapter 8) the topic of cosmic topology through the geometry learned in the preceding chapters.
Author | : Jessica S. Purcell |
Publisher | : American Mathematical Soc. |
Total Pages | : 369 |
Release | : 2020-10-06 |
Genre | : Education |
ISBN | : 1470454998 |
This book provides an introduction to hyperbolic geometry in dimension three, with motivation and applications arising from knot theory. Hyperbolic geometry was first used as a tool to study knots by Riley and then Thurston in the 1970s. By the 1980s, combining work of Mostow and Prasad with Gordon and Luecke, it was known that a hyperbolic structure on a knot complement in the 3-sphere gives a complete knot invariant. However, it remains a difficult problem to relate the hyperbolic geometry of a knot to other invariants arising from knot theory. In particular, it is difficult to determine hyperbolic geometric information from a knot diagram, which is classically used to describe a knot. This textbook provides background on these problems, and tools to determine hyperbolic information on knots. It also includes results and state-of-the art techniques on hyperbolic geometry and knot theory to date. The book was written to be interactive, with many examples and exercises. Some important results are left to guided exercises. The level is appropriate for graduate students with a basic background in algebraic topology, particularly fundamental groups and covering spaces. Some experience with some differential topology and Riemannian geometry will also be helpful.
Author | : Miranda Lundy |
Publisher | : Bloomsbury Publishing USA |
Total Pages | : 68 |
Release | : 2001-04-01 |
Genre | : Mathematics |
ISBN | : 0802713823 |
Originally published: Presteigne, Powys, Wales: Wooden Books Ltd., 1998.
Author | : Carol R. Findell |
Publisher | : |
Total Pages | : 110 |
Release | : 2001 |
Genre | : Education |
ISBN | : |
CD-ROM contains: Blackline masters for some of the activities illustrated in text -- Applets for students to manipulate -- Resources for professional development.
Author | : Olivier Faugeras |
Publisher | : MIT Press |
Total Pages | : 682 |
Release | : 2001 |
Genre | : Computers |
ISBN | : 9780262562041 |
This book formalizes and analyzes the relations between multiple views of a scene from the perspective of various types of geometries. A key feature is that it considers Euclidean and affine geometries as special cases of projective geometry. Over the last forty years, researchers have made great strides in elucidating the laws of image formation, processing, and understanding by animals, humans, and machines. This book describes the state of knowledge in one subarea of vision, the geometric laws that relate different views of a scene. Geometry, one of the oldest branches of mathematics, is the natural language for describing three-dimensional shapes and spatial relations. Projective geometry, the geometry that best models image formation, provides a unified framework for thinking about many geometric problems are relevant to vision. The book formalizes and analyzes the relations between multiple views of a scene from the perspective of various types of geometries. A key feature is that it considers Euclidean and affine geometries as special cases of projective geometry. Images play a prominent role in computer communications. Producers and users of images, in particular three-dimensional images, require a framework for stating and solving problems. The book offers a number of conceptual tools and theoretical results useful for the design of machine vision algorithms. It also illustrates these tools and results with many examples of real applications.
Author | : Hansjörg Geiges |
Publisher | : Cambridge University Press |
Total Pages | : 8 |
Release | : 2008-03-13 |
Genre | : Mathematics |
ISBN | : 1139467956 |
This text on contact topology is a comprehensive introduction to the subject, including recent striking applications in geometric and differential topology: Eliashberg's proof of Cerf's theorem via the classification of tight contact structures on the 3-sphere, and the Kronheimer-Mrowka proof of property P for knots via symplectic fillings of contact 3-manifolds. Starting with the basic differential topology of contact manifolds, all aspects of 3-dimensional contact manifolds are treated in this book. One notable feature is a detailed exposition of Eliashberg's classification of overtwisted contact structures. Later chapters also deal with higher-dimensional contact topology. Here the focus is on contact surgery, but other constructions of contact manifolds are described, such as open books or fibre connected sums. This book serves both as a self-contained introduction to the subject for advanced graduate students and as a reference for researchers.