Geometry Of Polynomials
Download Geometry Of Polynomials full books in PDF, epub, and Kindle. Read online free Geometry Of Polynomials ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Morris Marden |
Publisher | : American Mathematical Soc. |
Total Pages | : 260 |
Release | : 1949-12-31 |
Genre | : Mathematics |
ISBN | : 0821815032 |
During the years since the first edition of this well-known monograph appeared, the subject (the geometry of the zeros of a complex polynomial) has continued to display the same outstanding vitality as it did in the first 150 years of its history, beginning with the contributions of Cauchy and Gauss. Thus, the number of entries in the bibliography of this edition had to be increased from about 300 to about 600 and the book enlarged by one third. It now includes a more extensive treatment of Hurwitz polynomials and other topics. The new material on infrapolynomials, abstract polynomials, and matrix methods is of particular interest.
Author | : David A. Cox |
Publisher | : Springer Science & Business Media |
Total Pages | : 513 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 1475769113 |
An illustration of the many uses of algebraic geometry, highlighting the more recent applications of Groebner bases and resultants. Along the way, the authors provide an introduction to some algebraic objects and techniques more advanced than typically encountered in a first course. The book is accessible to non-specialists and to readers with a diverse range of backgrounds, assuming readers know the material covered in standard undergraduate courses, including abstract algebra. But because the text is intended for beginning graduate students, it does not require graduate algebra, and in particular, does not assume that the reader is familiar with modules.
Author | : Peter Borwein |
Publisher | : Springer Science & Business Media |
Total Pages | : 508 |
Release | : 1995-09-27 |
Genre | : Mathematics |
ISBN | : 9780387945095 |
After an introduction to the geometry of polynomials and a discussion of refinements of the Fundamental Theorem of Algebra, the book turns to a consideration of various special polynomials. Chebyshev and Descartes systems are then introduced, and Müntz systems and rational systems are examined in detail. Subsequent chapters discuss denseness questions and the inequalities satisfied by polynomials and rational functions. Appendices on algorithms and computational concerns, on the interpolation theorem, and on orthogonality and irrationality round off the text. The book is self-contained and assumes at most a senior-undergraduate familiarity with real and complex analysis.
Author | : Grigoriy Blekherman |
Publisher | : SIAM |
Total Pages | : 487 |
Release | : 2013-03-21 |
Genre | : Mathematics |
ISBN | : 1611972280 |
An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.
Author | : Larry Guth |
Publisher | : American Mathematical Soc. |
Total Pages | : 287 |
Release | : 2016-06-10 |
Genre | : Mathematics |
ISBN | : 1470428903 |
This book explains some recent applications of the theory of polynomials and algebraic geometry to combinatorics and other areas of mathematics. One of the first results in this story is a short elegant solution of the Kakeya problem for finite fields, which was considered a deep and difficult problem in combinatorial geometry. The author also discusses in detail various problems in incidence geometry associated to Paul Erdős's famous distinct distances problem in the plane from the 1940s. The proof techniques are also connected to error-correcting codes, Fourier analysis, number theory, and differential geometry. Although the mathematics discussed in the book is deep and far-reaching, it should be accessible to first- and second-year graduate students and advanced undergraduates. The book contains approximately 100 exercises that further the reader's understanding of the main themes of the book.
Author | : Pinaki Mondal |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2022-11-07 |
Genre | : Mathematics |
ISBN | : 9783030751760 |
This graduate textbook presents an approach through toric geometry to the problem of estimating the isolated solutions (counted with appropriate multiplicity) of n polynomial equations in n variables over an algebraically closed field. The text collects and synthesizes a number of works on Bernstein’s theorem of counting solutions of generic systems, ultimately presenting the theorem, commentary, and extensions in a comprehensive and coherent manner. It begins with Bernstein’s original theorem expressing solutions of generic systems in terms of the mixed volume of their Newton polytopes, including complete proofs of its recent extension to affine space and some applications to open problems. The text also applies the developed techniques to derive and generalize Kushnirenko's results on Milnor numbers of hypersurface singularities, which has served as a precursor to the development of toric geometry. Ultimately, the book aims to present material in an elementary format, developing all necessary algebraic geometry to provide a truly accessible overview suitable to second-year graduate students.
Author | : Alexander Prestel |
Publisher | : Springer Science & Business Media |
Total Pages | : 269 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 3662046482 |
Positivity is one of the most basic mathematical concepts, involved in many areas of mathematics (analysis, real algebraic geometry, functional analysis, etc.). The main objective of the book is to give useful characterizations of polynomials. Beyond basic knowledge in algebra, only valuation theory as explained in the appendix is needed.
Author | : Shigeru Kuroda |
Publisher | : Springer Nature |
Total Pages | : 317 |
Release | : 2020-03-27 |
Genre | : Mathematics |
ISBN | : 3030421368 |
This proceedings volume gathers selected, peer-reviewed works presented at the Polynomial Rings and Affine Algebraic Geometry Conference, which was held at Tokyo Metropolitan University on February 12-16, 2018. Readers will find some of the latest research conducted by an international group of experts on affine and projective algebraic geometry. The topics covered include group actions and linearization, automorphism groups and their structure as infinite-dimensional varieties, invariant theory, the Cancellation Problem, the Embedding Problem, Mathieu spaces and the Jacobian Conjecture, the Dolgachev-Weisfeiler Conjecture, classification of curves and surfaces, real forms of complex varieties, and questions of rationality, unirationality, and birationality. These papers will be of interest to all researchers and graduate students working in the fields of affine and projective algebraic geometry, as well as on certain aspects of commutative algebra, Lie theory, symplectic geometry and Stein manifolds.
Author | : Wolfram Decker |
Publisher | : Cambridge University Press |
Total Pages | : 127 |
Release | : 2013-02-07 |
Genre | : Computers |
ISBN | : 1107612535 |
A quick guide to computing in algebraic geometry with many explicit computational examples introducing the computer algebra system Singular.
Author | : Daniel J. Bates |
Publisher | : SIAM |
Total Pages | : 372 |
Release | : 2013-11-08 |
Genre | : Science |
ISBN | : 1611972698 |
This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.