Geometric Structures Of Lie Type On 5 Manifolds
Download Geometric Structures Of Lie Type On 5 Manifolds full books in PDF, epub, and Kindle. Read online free Geometric Structures Of Lie Type On 5 Manifolds ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Joachim Hilgert |
Publisher | : Springer Science & Business Media |
Total Pages | : 742 |
Release | : 2011-11-06 |
Genre | : Mathematics |
ISBN | : 0387847944 |
This self-contained text is an excellent introduction to Lie groups and their actions on manifolds. The authors start with an elementary discussion of matrix groups, followed by chapters devoted to the basic structure and representation theory of finite dimensinal Lie algebras. They then turn to global issues, demonstrating the key issue of the interplay between differential geometry and Lie theory. Special emphasis is placed on homogeneous spaces and invariant geometric structures. The last section of the book is dedicated to the structure theory of Lie groups. Particularly, they focus on maximal compact subgroups, dense subgroups, complex structures, and linearity. This text is accessible to a broad range of mathematicians and graduate students; it will be useful both as a graduate textbook and as a research reference.
Author | : Frank W. Warner |
Publisher | : Springer Science & Business Media |
Total Pages | : 283 |
Release | : 2013-11-11 |
Genre | : Mathematics |
ISBN | : 1475717997 |
Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.
Author | : Walter A. Poor |
Publisher | : Courier Corporation |
Total Pages | : 356 |
Release | : 2015-04-27 |
Genre | : Mathematics |
ISBN | : 0486151913 |
This introductory text defines geometric structure by specifying parallel transport in an appropriate fiber bundle and focusing on simplest cases of linear parallel transport in a vector bundle. 1981 edition.
Author | : Krzysztof Galicki |
Publisher | : Springer Science & Business Media |
Total Pages | : 303 |
Release | : 2010-07-25 |
Genre | : Mathematics |
ISBN | : 0817647430 |
Riemannian Topology and Structures on Manifolds results from a similarly entitled conference held on the occasion of Charles P. Boyer’s 65th birthday. The various contributions to this volume discuss recent advances in the areas of positive sectional curvature, Kähler and Sasakian geometry, and their interrelation to mathematical physics, especially M and superstring theory. Focusing on these fundamental ideas, this collection presents review articles, original results, and open problems of interest.
Author | : Shoshichi Kobayashi |
Publisher | : Springer Science & Business Media |
Total Pages | : 192 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642619819 |
Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc tures. All geometric structures are not created equal; some are creations of ~ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965.
Author | : J. F. Adams |
Publisher | : University of Chicago Press |
Total Pages | : 192 |
Release | : 1982 |
Genre | : Mathematics |
ISBN | : 0226005305 |
"[Lectures in Lie Groups] fulfills its aim admirably and should be a useful reference for any mathematician who would like to learn the basic results for compact Lie groups. . . . The book is a well written basic text [and Adams] has done a service to the mathematical community."—Irving Kaplansky
Author | : Robert Gilmore |
Publisher | : Cambridge University Press |
Total Pages | : 5 |
Release | : 2008-01-17 |
Genre | : Science |
ISBN | : 113946907X |
Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.
Author | : Piotr Kielanowski |
Publisher | : Springer Nature |
Total Pages | : 466 |
Release | : 2024 |
Genre | : Geometry |
ISBN | : 3031624076 |
Zusammenfassung: This volume collects papers based on lectures given at the XL Workshop on Geometric Methods in Physics, held in Białowieża, Poland in July 2023. These chapters provide readers an overview of cutting-edge research in infinite-dimensional groups, integrable systems, quantum groups, Lie algebras and their generalizations and a wide variety of other areas. Specific topics include: Yang-Baxter equation The restricted Siegel disc and restricted Grassmannian Geometric and deformation quantization Degenerate integrability Lie algebroids and groupoids Skew braces Geometric Methods in Physics XL will be a valuable resource for mathematicians and physicists interested in recent developments at the intersection of these areas
Author | : William P. Thurston |
Publisher | : American Mathematical Society |
Total Pages | : 337 |
Release | : 2023-06-16 |
Genre | : Mathematics |
ISBN | : 1470474743 |
William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning and thinking are integral elements of his distinctive legacy. This four-part collection brings together in one place Thurston's major writings, many of which are appearing in publication for the first time. Volumes I–III contain commentaries by the Editors. Volume IV includes a preface by Steven P. Kerckhoff. Volume IV contains Thurston's highly influential, though previously unpublished, 1977–78 Princeton Course Notes on the Geometry and Topology of 3-manifolds. It is an indispensable part of the Thurston collection but can also be used on its own as a textbook or for self-study.
Author | : Danny Calegari |
Publisher | : Oxford University Press on Demand |
Total Pages | : 378 |
Release | : 2007-05-17 |
Genre | : Mathematics |
ISBN | : 0198570082 |
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.