Geometric Representation Theory and Extended Affine Lie Algebras

Geometric Representation Theory and Extended Affine Lie Algebras
Author: Erhard Neher
Publisher: American Mathematical Soc.
Total Pages: 226
Release: 2011
Genre: Mathematics
ISBN: 082185237X

Lie theory has connections to many other disciplines such as geometry, number theory, mathematical physics, and algebraic combinatorics. The interaction between algebra, geometry and combinatorics has proven to be extremely powerful in shedding new light on each of these areas. This book presents the lectures given at the Fields Institute Summer School on Geometric Representation Theory and Extended Affine Lie Algebras held at the University of Ottawa in 2009. It provides a systematic account by experts of some of the exciting developments in Lie algebras and representation theory in the last two decades. It includes topics such as geometric realizations of irreducible representations in three different approaches, combinatorics and geometry of canonical and crystal bases, finite $W$-algebras arising as the quantization of the transversal slice to a nilpotent orbit, structure theory of extended affine Lie algebras, and representation theory of affine Lie algebras at level zero. This book will be of interest to mathematicians working in Lie algebras and to graduate students interested in learning the basic ideas of some very active research directions. The extensive references in the book will be helpful to guide non-experts to the original sources.

Geometric Representation Theory and Extended Affine Lie Algebras

Geometric Representation Theory and Extended Affine Lie Algebras
Author: Erhard Neher
Publisher: American Mathematical Soc.
Total Pages: 213
Release: 2011
Genre: Mathematics
ISBN: 9780821871614

This text presents lectures given at the Fields Institute Summer School on Geometric Representation Theory and Extended Affine Lie Algebras held at the University of Ottawa in 2009. It provides a systematic account by experts of some of the developments in Lie algebras and representation theory in the last two decades.

Lie Algebras, Vertex Operator Algebras, and Related Topics

Lie Algebras, Vertex Operator Algebras, and Related Topics
Author: Katrina Barron
Publisher: American Mathematical Soc.
Total Pages: 282
Release: 2017-08-15
Genre: Mathematics
ISBN: 1470426668

This volume contains the proceedings of the conference on Lie Algebras, Vertex Operator Algebras, and Related Topics, celebrating the 70th birthday of James Lepowsky and Robert Wilson, held from August 14–18, 2015, at the University of Notre Dame, Notre Dame, Indiana. Since their seminal work in the 1970s, Lepowsky and Wilson, their collaborators, their students, and those inspired by their work, have developed an amazing body of work intertwining the fields of Lie algebras, vertex algebras, number theory, theoretical physics, quantum groups, the representation theory of finite simple groups, and more. The papers presented here include recent results and descriptions of ongoing research initiatives representing the broad influence and deep connections brought about by the work of Lepowsky and Wilson and include a contribution by Yi-Zhi Huang summarizing some major open problems in these areas, in particular as they pertain to two-dimensional conformal field theory.

Quantum Affine Algebras, Extended Affine Lie Algebras, and Their Applications

Quantum Affine Algebras, Extended Affine Lie Algebras, and Their Applications
Author: Yun Gao
Publisher: American Mathematical Soc.
Total Pages: 314
Release: 2010
Genre: Mathematics
ISBN: 0821845071

This volume contains the proceedings of the conference on Quantum Affine Algebras, Extended Affine Lie Algebras, and Applications, which was held at the Banff International Research Station, Banff, Canada, from March 2-7, 2008. Many of the papers include new results on different aspects of quantum affine algebras, extended affine Lie algebras, and their applications in other areas of mathematics and physics. Any reader interested in learning about the recent developments in quantum affine algebras and extended affine Lie algebras will benefit from this book.

Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification

Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification
Author: Jacob Greenstein
Publisher: Springer Nature
Total Pages: 453
Release: 2022-03-11
Genre: Mathematics
ISBN: 3030638499

This volume collects chapters that examine representation theory as connected with affine Lie algebras and their quantum analogues, in celebration of the impact Vyjayanthi Chari has had on this area. The opening chapters are based on mini-courses given at the conference “Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification”, held on the occasion of Chari’s 60th birthday at the Catholic University of America in Washington D.C., June 2018. The chapters that follow present a broad view of the area, featuring surveys, original research, and an overview of Vyjayanthi Chari’s significant contributions. Written by distinguished experts in representation theory, a range of topics are covered, including: String diagrams and categorification Quantum affine algebras and cluster algebras Steinberg groups for Jordan pairs Dynamical quantum determinants and Pfaffians Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification will be an ideal resource for researchers in the fields of representation theory and mathematical physics.

Forty Years Of Algebraic Groups, Algebraic Geometry, And Representation Theory In China: In Memory Of The Centenary Year Of Xihua Cao's Birth

Forty Years Of Algebraic Groups, Algebraic Geometry, And Representation Theory In China: In Memory Of The Centenary Year Of Xihua Cao's Birth
Author: Jie Du
Publisher: World Scientific
Total Pages: 490
Release: 2022-10-21
Genre: Mathematics
ISBN: 9811263507

Professor Xihua Cao (1920-2005) was a leading scholar at East China Normal University (ECNU) and a famous algebraist in China. His contribution to the Chinese academic circle is particularly the formation of a world-renowned 'ECNU School' in algebra, covering research areas include algebraic groups, quantum groups, algebraic geometry, Lie algebra, algebraic number theory, representation theory and other hot fields. In January 2020, in order to commemorate Professor Xihua Cao's centenary birthday, East China Normal University held a three-day academic conference. Scholars at home and abroad gave dedications or delivered lectures in the conference. This volume originates from the memorial conference, collecting the dedications of scholars, reminiscences of family members, and 16 academic articles written based on the lectures in the conference, covering a wide range of research hot topics in algebra. The book shows not only scholars' respect and memory for Professor Xihua Cao, but also the research achievements of Chinese scholars at home and abroad.

Introduction to Representation Theory

Introduction to Representation Theory
Author: Pavel I. Etingof
Publisher: American Mathematical Soc.
Total Pages: 240
Release: 2011
Genre: Mathematics
ISBN: 0821853511

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.

Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics

Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics
Author: Pramod M. Achar
Publisher: American Mathematical Society
Total Pages: 296
Release: 2014-08-27
Genre: Mathematics
ISBN: 0821898523

This volume contains the proceedings of two AMS Special Sessions "Geometric and Algebraic Aspects of Representation Theory" and "Quantum Groups and Noncommutative Algebraic Geometry" held October 13–14, 2012, at Tulane University, New Orleans, Louisiana. Included in this volume are original research and some survey articles on various aspects of representations of algebras including Kac—Moody algebras, Lie superalgebras, quantum groups, toroidal algebras, Leibniz algebras and their connections with other areas of mathematics and mathematical physics.

Perspectives on Noncommutative Geometry

Perspectives on Noncommutative Geometry
Author: Masoud Khalkhali
Publisher: American Mathematical Soc.
Total Pages: 176
Release: 2011
Genre: Mathematics
ISBN: 0821848496

This volume represents the proceedings of the Noncommutative Geometry Workshop that was held as part of the thematic program on operator algebras at the Fields Institute in May 2008. Pioneered by Alain Connes starting in the late 1970s, noncommutative geometry was originally inspired by global analysis, topology, operator algebras, and quantum physics. Its main applications were to settle some long-standing conjectures, such as the Novikov conjecture and the Baum-Connes conjecture. Next came the impact of spectral geometry and the way the spectrum of a geometric operator, like the Laplacian, holds information about the geometry and topology of a manifold, as in the celebrated Weyl law. This has now been vastly generalized through Connes' notion of spectral triples. Finally, recent years have witnessed the impact of number theory, algebraic geometry and the theory of motives, and quantum field theory on noncommutative geometry. Almost all of these aspects are touched upon with new results in the papers of this volume. This book is intended for graduate students and researchers in both mathematics and theoretical physics who are interested in noncommutative geometry and its applications.

Lie Groups, Geometry, and Representation Theory

Lie Groups, Geometry, and Representation Theory
Author: Victor G. Kac
Publisher: Springer
Total Pages: 545
Release: 2018-12-12
Genre: Mathematics
ISBN: 3030021912

This volume, dedicated to the memory of the great American mathematician Bertram Kostant (May 24, 1928 – February 2, 2017), is a collection of 19 invited papers by leading mathematicians working in Lie theory, representation theory, algebra, geometry, and mathematical physics. Kostant’s fundamental work in all of these areas has provided deep new insights and connections, and has created new fields of research. This volume features the only published articles of important recent results of the contributors with full details of their proofs. Key topics include: Poisson structures and potentials (A. Alekseev, A. Berenstein, B. Hoffman) Vertex algebras (T. Arakawa, K. Kawasetsu) Modular irreducible representations of semisimple Lie algebras (R. Bezrukavnikov, I. Losev) Asymptotic Hecke algebras (A. Braverman, D. Kazhdan) Tensor categories and quantum groups (A. Davydov, P. Etingof, D. Nikshych) Nil-Hecke algebras and Whittaker D-modules (V. Ginzburg) Toeplitz operators (V. Guillemin, A. Uribe, Z. Wang) Kashiwara crystals (A. Joseph) Characters of highest weight modules (V. Kac, M. Wakimoto) Alcove polytopes (T. Lam, A. Postnikov) Representation theory of quantized Gieseker varieties (I. Losev) Generalized Bruhat cells and integrable systems (J.-H. Liu, Y. Mi) Almost characters (G. Lusztig) Verlinde formulas (E. Meinrenken) Dirac operator and equivariant index (P.-É. Paradan, M. Vergne) Modality of representations and geometry of θ-groups (V. L. Popov) Distributions on homogeneous spaces (N. Ressayre) Reduction of orthogonal representations (J.-P. Serre)