General Galois Geometries

General Galois Geometries
Author: James Hirschfeld
Publisher: Springer
Total Pages: 422
Release: 2016-02-03
Genre: Mathematics
ISBN: 1447167902

This book is the second edition of the third and last volume of a treatise on projective spaces over a finite field, also known as Galois geometries. This volume completes the trilogy comprised of plane case (first volume) and three dimensions (second volume). This revised edition includes much updating and new material. It is a mostly self-contained study of classical varieties over a finite field, related incidence structures and particular point sets in finite n-dimensional projective spaces. General Galois Geometries is suitable for PhD students and researchers in combinatorics and geometry. The separate chapters can be used for courses at postgraduate level.

Projective Geometries Over Finite Fields

Projective Geometries Over Finite Fields
Author: James William Peter Hirschfeld
Publisher: Oxford University Press on Demand
Total Pages: 555
Release: 1998
Genre: Law
ISBN: 9780198502951

I. Introduction 1. Finite fields 2. Projective spaces and algebraic varieties II. Elementary general properties 3. Subspaces 4. Partitions 5. Canonical forms for varieties and polarities III. The line and the plane 6. The line 7. First properties of the plane 8. Ovals 9. Arithmetic of arcs of degree two 10. Arcs in ovals 11. Cubic curves 12. Arcs of higher degree 13. Blocking sets 14. Small planes Appendix Notation References.

General Galois Geometries

General Galois Geometries
Author: James William Peter Hirschfeld
Publisher:
Total Pages: 432
Release: 1991
Genre: Mathematics
ISBN:

Projective spaces over a finite field, otherwise known as Galois geometries, find wide application in coding theory, algebraic geometry, design theory, graph theory, and group theory as well as being beautiful objects of study in their own right. This volume is the culmination of a three volume treatise on this subject. With its companion volumes (Projective Geometries Over Finite Fields and Finite Projective Spaces of Three Dimensions) this work will provide a major reference to the subject. It is essentially self-contained and will be an invaluable companion for research workers and post-graduate students working on these topics. The authors study three main themes: the study of algebraic varieties over finite fields, the combinatorics of Galois geometries, and the identification of various incidence structures associated with them. In particular, much attention is devoted to hermitian varieties, to Grassmannian varieties, and to polar spaces. The topics covered find application across a wide-range of topics in pure mathematics. The book will be useful to research workers and postgraduate students in combinatorics and geometry, and some computer scientists.

Dynamics, Statistics and Projective Geometry of Galois Fields

Dynamics, Statistics and Projective Geometry of Galois Fields
Author: V. I. Arnold
Publisher: Cambridge University Press
Total Pages: 91
Release: 2010-12-02
Genre: Mathematics
ISBN: 1139493442

V. I. Arnold reveals some unexpected connections between such apparently unrelated theories as Galois fields, dynamical systems, ergodic theory, statistics, chaos and the geometry of projective structures on finite sets. The author blends experimental results with examples and geometrical explorations to make these findings accessible to a broad range of mathematicians, from undergraduate students to experienced researchers.

The Geometry of Schemes

The Geometry of Schemes
Author: David Eisenbud
Publisher: Springer Science & Business Media
Total Pages: 265
Release: 2006-04-06
Genre: Mathematics
ISBN: 0387226397

Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.

Galois Connections and Applications

Galois Connections and Applications
Author: K. Denecke
Publisher: Springer Science & Business Media
Total Pages: 511
Release: 2013-11-11
Genre: Mathematics
ISBN: 1402018983

Galois connections provide the order- or structure-preserving passage between two worlds of our imagination - and thus are inherent in hu man thinking wherever logical or mathematical reasoning about cer tain hierarchical structures is involved. Order-theoretically, a Galois connection is given simply by two opposite order-inverting (or order preserving) maps whose composition yields two closure operations (or one closure and one kernel operation in the order-preserving case). Thus, the "hierarchies" in the two opposite worlds are reversed or transported when passing to the other world, and going forth and back becomes a stationary process when iterated. The advantage of such an "adjoint situation" is that information about objects and relationships in one of the two worlds may be used to gain new information about the other world, and vice versa. In classical Galois theory, for instance, properties of permutation groups are used to study field extensions. Or, in algebraic geometry, a good knowledge of polynomial rings gives insight into the structure of curves, surfaces and other algebraic vari eties, and conversely. Moreover, restriction to the "Galois-closed" or "Galois-open" objects (the fixed points of the composite maps) leads to a precise "duality between two maximal subworlds".

Algebraic Geometry in Coding Theory and Cryptography

Algebraic Geometry in Coding Theory and Cryptography
Author: Harald Niederreiter
Publisher: Princeton University Press
Total Pages: 272
Release: 2009-09-21
Genre: Mathematics
ISBN: 140083130X

This textbook equips graduate students and advanced undergraduates with the necessary theoretical tools for applying algebraic geometry to information theory, and it covers primary applications in coding theory and cryptography. Harald Niederreiter and Chaoping Xing provide the first detailed discussion of the interplay between nonsingular projective curves and algebraic function fields over finite fields. This interplay is fundamental to research in the field today, yet until now no other textbook has featured complete proofs of it. Niederreiter and Xing cover classical applications like algebraic-geometry codes and elliptic-curve cryptosystems as well as material not treated by other books, including function-field codes, digital nets, code-based public-key cryptosystems, and frameproof codes. Combining a systematic development of theory with a broad selection of real-world applications, this is the most comprehensive yet accessible introduction to the field available. Introduces graduate students and advanced undergraduates to the foundations of algebraic geometry for applications to information theory Provides the first detailed discussion of the interplay between projective curves and algebraic function fields over finite fields Includes applications to coding theory and cryptography Covers the latest advances in algebraic-geometry codes Features applications to cryptography not treated in other books

Introduction to Algebraic Geometry

Introduction to Algebraic Geometry
Author: Serge Lang
Publisher: Courier Dover Publications
Total Pages: 273
Release: 2019-03-20
Genre: Mathematics
ISBN: 048683980X

Author Serge Lang defines algebraic geometry as the study of systems of algebraic equations in several variables and of the structure that one can give to the solutions of such equations. The study can be carried out in four ways: analytical, topological, algebraico-geometric, and arithmetic. This volume offers a rapid, concise, and self-contained introductory approach to the algebraic aspects of the third method, the algebraico-geometric. The treatment assumes only familiarity with elementary algebra up to the level of Galois theory. Starting with an opening chapter on the general theory of places, the author advances to examinations of algebraic varieties, the absolute theory of varieties, and products, projections, and correspondences. Subsequent chapters explore normal varieties, divisors and linear systems, differential forms, the theory of simple points, and algebraic groups, concluding with a focus on the Riemann-Roch theorem. All the theorems of a general nature related to the foundations of the theory of algebraic groups are featured.

A Course in Galois Theory

A Course in Galois Theory
Author: D. J. H. Garling
Publisher: Cambridge University Press
Total Pages: 180
Release: 1986
Genre: Mathematics
ISBN: 9780521312493

This textbook, based on lectures given over a period of years at Cambridge, is a detailed and thorough introduction to Galois theory.