Gauge Theories In The Twentieth Century

Gauge Theories In The Twentieth Century
Author: John C Taylor
Publisher: World Scientific
Total Pages: 404
Release: 2001-10-19
Genre: Science
ISBN: 1783261382

By the end of the 1970s, it was clear that all the known forces of nature (including, in a sense, gravity) were examples of gauge theories, characterized by invariance under symmetry transformations chosen independently at each position and each time. These ideas culminated with the finding of the W and Z gauge bosons (and perhaps also the Higgs boson). This important book brings together the key papers in the history of gauge theories, including the discoveries of: the role of gauge transformations in the quantum theory of electrically charged particles in the 1920s; nonabelian gauge groups in the 1950s; vacuum symmetry-breaking in the 1960s; asymptotic freedom in the 1970s. A short introduction explains the significance of the papers, and the connections between them.

Gauge Theories in the Twentieth Century

Gauge Theories in the Twentieth Century
Author: John C. Taylor
Publisher: World Scientific
Total Pages: 404
Release: 2001
Genre: Science
ISBN: 1848161603

By the end of the 1970s, it was clear that all the known forces of nature (including, in a sense, gravity) were examples of gauge theories, characterized by invariance under symmetry transformations chosen independently at each position and each time. These ideas culminated with the finding of the W and Z gauge bosons (and perhaps also the Higgs boson). This important book brings together the key papers in the history of gauge theories, including the discoveries of: the role of gauge transformations in the quantum theory of electrically charged particles in the 1920s; nonabelian gauge groups in the 1950s; vacuum symmetry-breaking in the 1960s; asymptotic freedom in the 1970s. A short introduction explains the significance of the papers, and the connections between them. Contents: Gauge Invariance in Electromagnetism; Non-Abelian Gauge Theories; Gravity as a Gauge Theory; Gauge Invariance and Superconductivity; Spontaneous Symmetry Breaking and Particle Physics; Gauge-Fixing in Non-Abelian Gauge Theories; Gauge Identities and Unitarity; Asymptotic Freedom; Monopoles and Vortex Lines; Non-Pertubative Approaches; Instantons and Vacuum Structure; Three-Dimensional Gauge Fields and Topological Actions; Gauge Theories and Mathematics. Readership: Graduate students, researchers and lecturers in mathematical, theoretical, quantum and high energy physics, as well as historians of science.

The Dawning of Gauge Theory

The Dawning of Gauge Theory
Author: Lochlainn O'Raifeartaigh
Publisher: Princeton University Press
Total Pages:
Release: 2020-06-30
Genre: Science
ISBN: 0691215111

During the course of this century, gauge invariance has slowly emerged from being an incidental symmetry of electromagnetism to being a fundamental geometrical principle underlying the four known fundamental physical interactions. The development has been in two stages. In the first stage (1916-1956) the geometrical significance of gauge-invariance gradually came to be appreciated and the original abelian gauge-invariance of electromagnetism was generalized to non-abelian gauge invariance. In the second stage (1960-1975) it was found that, contrary to first appearances, the non-abelian gauge-theories provided exactly the framework that was needed to describe the nuclear interactions (both weak and strong) and thus provided a universal framework for describing all known fundamental interactions. In this work, Lochlainn O'Raifeartaigh describes the former phase. O'Raifeartaigh first illustrates how gravitational theory and quantum mechanics played crucial roles in the reassessment of gauge theory as a geometric principle and as a framework for describing both electromagnetism and gravitation. He then describes how the abelian electromagnetic gauge-theory was generalized to its present non-abelian form. The development is illustrated by including a selection of relevant articles, many of them appearing here for the first time in English, notably by Weyl, Schrodinger, Klein, and London in the pre-war years, and by Pauli, Shaw, Yang-Mills, and Utiyama after the war. The articles illustrate that the reassessment of gauge-theory, due in a large measure to Weyl, constituted a major philosophical as well as technical advance.

Shifting Standards

Shifting Standards
Author: Allan Franklin
Publisher: University of Pittsburgh Press
Total Pages: 362
Release: 2018-11-24
Genre: Science
ISBN: 0822979195

In Shifting Standards, Allan Franklin provides an overview of notable experiments in particle physics. Using papers published in Physical Review, the journal of the American Physical Society, as his basis, Franklin details the experiments themselves, their data collection, the events witnessed, and the interpretation of results. From these papers, he distills the dramatic changes to particle physics experimentation from 1894 through 2009. Franklin develops a framework for his analysis, viewing each example according to exclusion and selection of data; possible experimenter bias; details of the experimental apparatus; size of the data set, apparatus, and number of authors; rates of data taking along with analysis and reduction; distinction between ideal and actual experiments; historical accounts of previous experiments; and personal comments and style. From Millikan's tabletop oil-drop experiment to the Compact Muon Solenoid apparatus measuring approximately 4,000 cubic meters (not including accelerators) and employing over 2,000 authors, Franklin's study follows the decade-by-decade evolution of scale and standards in particle physics experimentation. As he shows, where once there were only one or two collaborators, now it literally takes a village. Similar changes are seen in data collection: in 1909 Millikan's data set took 175 oil drops, of which he used 23 to determine the value of e, the charge of the electron; in contrast, the 1988-1992 E791 experiment using the Collider Detector at Fermilab, investigating the hadroproduction of charm quarks, recorded 20 billion events. As we also see, data collection took a quantum leap in the 1950s with the use of computers. Events are now recorded at rates as of a few hundred per second, and analysis rates have progressed similarly. Employing his epistemology of experimentation, Franklin deconstructs each example to view the arguments offered and the correctness of the results. Overall, he finds that despite the metamorphosis of the process, the role of experimentation has remained remarkably consistent through the years: to test theories and provide factual basis for scientific knowledge, to encourage new theories, and to reveal new phenomenon.

30 Years of the Landau Institute

30 Years of the Landau Institute
Author: Isaak Markovich Khalatnikov
Publisher: World Scientific
Total Pages: 802
Release: 1996
Genre: Science
ISBN: 9789810222536

The Landau Institute for Theoretical Physics was created in 1965 by a group of LD Landau's pupils. Very soon, it was widely recognized as one of the world's leading centers in theoretical physics. According to Science Magazine, the Institute in the eighties had the highest citation index among all the scientific organizations in the former Soviet Union. This collection of the best papers of the Institute reflects the development of the many directions in the exact sciences during the last 30 years. The reader can find the original formulations of well-known notions in condensed matter theory, quantum field theory, mathematical physics and astrophysics, which were introduced by members of the Landau Institute.The following are some of the achievements described in this book: monopoles (A Polyakov), instantons (A Belavin et al.), weak crystallization (S Brazovskii), spin superfluidity (I Fomin), finite band potentials (S Novikov) and paraconductivity (A Larkin, L Aslamasov).

On Hilbert's Sixth Problem

On Hilbert's Sixth Problem
Author: Newton C. A. da Costa
Publisher: Springer Nature
Total Pages: 191
Release: 2022-01-25
Genre: Science
ISBN: 3030838374

This book explores the premise that a physical theory is an interpretation of the analytico–canonical formalism. Throughout the text, the investigation stresses that classical mechanics in its Lagrangian formulation is the formal backbone of theoretical physics. The authors start from a presentation of the analytico–canonical formalism for classical mechanics, and its applications in electromagnetism, Schrödinger's quantum mechanics, and field theories such as general relativity and gauge field theories, up to the Higgs mechanism. The analysis uses the main criterion used by physicists for a theory: to formulate a physical theory we write down a Lagrangian for it. A physical theory is a particular instance of the Lagrangian functional. So, there is already an unified physical theory. One only has to specify the corresponding Lagrangian (or Lagrangian density); the dynamical equations are the associated Euler–Lagrange equations. The theory of Suppes predicates as the main tool in the axiomatization and examples from the usual theories in physics. For applications, a whole plethora of results from logic that lead to interesting, and sometimes unexpected, consequences. This volume looks at where our physics happen and which mathematical universe we require for the description of our concrete physical events. It also explores if we use the constructive universe or if we need set–theoretically generic spacetimes.

Gauge Theories in the Twentieth Century

Gauge Theories in the Twentieth Century
Author: John C. Taylor
Publisher: World Scientific
Total Pages: 404
Release: 2001
Genre: Science
ISBN: 1860942814

By the end of the 1970s, it was clear that all the known forces of nature (including, in a sense, gravity) were examples of gauge theories, characterized by invariance under symmetry transformations chosen independently at each position and each time. These ideas culminated with the finding of the W and Z gauge bosons (and perhaps also the Higgs boson). This important book brings together the key papers in the history of gauge theories, including the discoveries of: the role of gauge transformations in the quantum theory of electrically charged particles in the 1920s; nonabelian gauge groups in the 1950s; vacuum symmetry-breaking in the 1960s; asymptotic freedom in the 1970s. A short introduction explains the significance of the papers, and the connections between them.

Murray Gell-Mann

Murray Gell-Mann
Author: Murray Gell-Mann
Publisher: World Scientific
Total Pages: 466
Release: 2010
Genre: Science
ISBN: 9812836845

Murray Gell-Mann is one of the leading physicists in the world. He was awarded the Nobel Prize in Physics in 1969 for his work on the SU(3) symmetry. His list of publications, albeit relatively short, is highly impressive — he has written mainly papers, which have become landmarks in physics. In 1953, Gell-Mann introduced the strangeness quantum number. In 1954, he proposed, together with F Low, the idea of the renormalization group. In 1958, Gell-Mann wrote, together with R Feynman, an important paper on the V-A theory of weak interactions. In 1961, Gell-Mann published his ideas on the SU(3) symmetry. In 1964, he proposed the quark model for hadrons. In 1971, Gell-Mann, together with H Fritzsch, proposed the color quantum number; and in 1972, the theory of QCD. These major publications of Gell-Mann are collected in this volume, thus providing physicists with easy access to the important publications of Gell-Mann.

Fundamental Forces of Nature

Fundamental Forces of Nature
Author: Kerson Huang
Publisher: World Scientific
Total Pages: 285
Release: 2007
Genre: Science
ISBN: 9812706445

Gauge fields are the messengers carrying signals between elementary particles, enabling them to interact with each other. Originating at the level of quarks, these basic interactions percolate upwards, through nuclear and atomic physics, through chemical and solid state physics, to make our everyday world go round. This book tells the story of gauge fields, from Maxwell's 1860 theory of electromagnetism to the 1954 theory of Yang and Mills that underlies the Standard Model of elementary particle theory. In the course of the narration, the author introduces people and events in experimental and theoretical physics that contribute to ideas that have shaped our conception of the physical world.

Deep Down Things

Deep Down Things
Author: Bruce A. Schumm
Publisher: JHU Press
Total Pages: 406
Release: 2004-10-20
Genre: Science
ISBN: 9780801879715

A useful scientific theory, claimed Einstein, must be explicable to any intelligent person. In Deep Down Things, experimental particle physicist Bruce Schumm has taken this dictum to heart, providing in clear, straightforward prose an elucidation of the Standard Model of particle physics -- a theory that stands as one of the crowning achievements of twentieth-century science. In this one-of-a-kind book, the work of many of the past century's most notable physicists, including Einstein, Schrodinger, Heisenberg, Dirac, Feynman, Gell-Mann, and Weinberg, is knit together in a thorough and accessible exposition of the revolutionary notions that underlie our current view of the fundamental nature of the physical world. Schumm, who has spent much of his life emmersed in the subatomic world, goes far beyond a mere presentation of the "building blocks" of matter, bringing to life the remarkable connection between the ivory tower world of the abstract mathematician and the day-to-day, life-enabling properties of the natural world. Schumm leaves us with an insight into the profound open questions of particle physics, setting the stage for understanding the progress the field is poised to make over the next decade or two. Introducing readers to the world of particle physics, Deep Down Things opens new realms within which are many clues to unraveling the mysteries of the universe.