Gas Phase Molecular Dynamics
Download Gas Phase Molecular Dynamics full books in PDF, epub, and Kindle. Read online free Gas Phase Molecular Dynamics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Karol Jackowski |
Publisher | : Royal Society of Chemistry |
Total Pages | : 419 |
Release | : 2016-02-09 |
Genre | : Medical |
ISBN | : 1782623817 |
This book covers the recent NMR studies with the application of gaseous molecules. Among the comprehensively discussed aspects of the area it includes in particular: new multinuclear experiments that deliver spectral parameters of isolated molecules and provide the most accurate values of nuclear magnetic shielding, isotropic spin–spin coupling and relaxation times; advanced, precise and correct theoretical descriptions of spectral parameters of molecules as well as the application of gas-phase NMR measurements to chemical analysis and medicine. The progress of research in these fields is enormous and has rapidly changed our knowledge and understanding of molecular parameters in NMR spectroscopy. For example, accurate studies of the shielding for isolated molecules allow the exact determination of nuclear magnetic dipole moments, the calculated values of spectral parameters can be verified by precise gas-phase NMR measurements, and the application of hyperpolarized noble gases provides excellent MRI pictures of lungs. Aimed at graduates and researchers in spectroscopy, analytical chemistry and those researching the applications of NMR in medicine, this book presents the connections between sophisticated experiments, the theory of magnetic parameters and the exploration of new methods in practice.
Author | : Anouk M. Rijs |
Publisher | : Springer |
Total Pages | : 409 |
Release | : 2015-06-03 |
Genre | : Science |
ISBN | : 3319192043 |
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
Author | : Ian W. M. Smith |
Publisher | : Butterworth-Heinemann |
Total Pages | : 400 |
Release | : 2013-10-22 |
Genre | : Science |
ISBN | : 1483161994 |
Kinetics and Dynamics of Elementary Gas Reactions surveys the state of modern knowledge on elementary gas reactions to understand natural phenomena in terms of molecular behavior. Part 1 of this book describes the theoretical and conceptual background of elementary gas-phase reactions, emphasizing the assumptions and limitations of each theoretical approach, as well as its strengths. In Part 2, selected experimental results are considered to demonstrate the scope of present day techniques and illustrate the application of the theoretical ideas introduced in Part 1. This publication is intended primarily for working kineticists and chemists, but is also beneficial to graduate students.
Author | : Dominik Marx |
Publisher | : Cambridge University Press |
Total Pages | : 503 |
Release | : 2009-04-30 |
Genre | : Science |
ISBN | : 1139477196 |
Ab initio molecular dynamics revolutionized the field of realistic computer simulation of complex molecular systems and processes, including chemical reactions, by unifying molecular dynamics and electronic structure theory. This book provides the first coherent presentation of this rapidly growing field, covering a vast range of methods and their applications, from basic theory to advanced methods. This fascinating text for graduate students and researchers contains systematic derivations of various ab initio molecular dynamics techniques to enable readers to understand and assess the merits and drawbacks of commonly used methods. It also discusses the special features of the widely used Car–Parrinello approach, correcting various misconceptions currently found in research literature. The book contains pseudo-code and program layout for typical plane wave electronic structure codes, allowing newcomers to the field to understand commonly used program packages and enabling developers to improve and add new features in their code.
Author | : Lichang Wang |
Publisher | : BoD – Books on Demand |
Total Pages | : 448 |
Release | : 2012-04-11 |
Genre | : Computers |
ISBN | : 9535104446 |
Molecular Dynamics is a two-volume compendium of the ever-growing applications of molecular dynamics simulations to solve a wider range of scientific and engineering challenges. The contents illustrate the rapid progress on molecular dynamics simulations in many fields of science and technology, such as nanotechnology, energy research, and biology, due to the advances of new dynamics theories and the extraordinary power of today's computers. This second book begins with an introduction of molecular dynamics simulations to macromolecules and then illustrates the computer experiments using molecular dynamics simulations in the studies of synthetic and biological macromolecules, plasmas, and nanomachines. Coverage of this book includes: Complex formation and dynamics of polymers Dynamics of lipid bilayers, peptides, DNA, RNA, and proteins Complex liquids and plasmas Dynamics of molecules on surfaces Nanofluidics and nanomachines
Author | : Sidney Yip |
Publisher | : Springer Science & Business Media |
Total Pages | : 2903 |
Release | : 2007-11-17 |
Genre | : Science |
ISBN | : 1402032862 |
The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.
Author | : Hai-Lung Dai |
Publisher | : World Scientific |
Total Pages | : 1148 |
Release | : 1995 |
Genre | : Science |
ISBN | : 9789810221119 |
Since the first stimulated emission pumping (SEP) experiments more than a decade ago, this technique has proven powerful for studying vibrationally excited molecules. SEP is now widely used by increasing numbers of research groups to investigate fundamental problems in spectroscopy, intramolecular dynamics, intermolecular interactions, and even reactions. SEP provides rotationally pre-selected spectra of vibrationally highly excited molecules undergoing large amplitude motions. A unique feature of SEP is the ability to access systematically a wide variety of extreme excitations localized in various parts of a molecule, and to prepare populations in specific, high vibrational levels. SEP has made it possible to ask and answer specific questions about intramolecular vibrational redistribution and the role of vibrational excitation in chemical reactions.
Author | : Kasra Amini |
Publisher | : Royal Society of Chemistry |
Total Pages | : 671 |
Release | : 2023-12-20 |
Genre | : Science |
ISBN | : 1837671141 |
Author | : Yongchen Song |
Publisher | : Elsevier |
Total Pages | : 544 |
Release | : 2024-03-09 |
Genre | : Science |
ISBN | : 0443217645 |
The development, storage and comprehensive utilization of energy is an important subject concerned by scientists all over the world. Carbon capture and storage technology is one of the most effective mitigation technologies for global climate change, accurate understanding of the migration of multiphase fluids in reservoirs is crucial for reservoir stock evaluation and safety evaluation. Understanding Carbon Geologic Sequestration and Gas Hydrate from Molecular Simulation systematically introduces CO2 geological sequestration and gas hydrate at the molecular-scale, with research including interfacial properties of multiphase, multicomponent systems, hydrogen bonding properties, adsorption characteristics of CO2 / CH4 in the pore, kinetic properties of decomposition/nucleation/growth of gas hydrate, the influence of additives on gas hydrate growth dynamics, and hydrate prevention and control technology. This book focuses on research-based achievements and provides a comprehensive look at global progress in the field. Because there are limited resources available on carbon geologic sequestration technology and gas hydrate technology at the molecular level, the authors wrote this book to fill a gap in scientific literature and prompt further research. - Distills learnings for fundamental and advanced knowledge of molecular simulation in carbon dioxide and gas hydrate storage - Synthesizes knowledge about the development status of CGS technology and hydrate technology in the molecular field – tackling these technologies from a microscopic perspective - Analyzes scientific problems related to CGS technology and hydrate technology based on molecular simulation methods - Explores challenges relative to carbon dioxide and hydrate storage - Provides hierarchical analysis combined with the authors' own research-based case studies for enhanced comprehension and application
Author | : Giovanni Ciccotti |
Publisher | : MDPI |
Total Pages | : 627 |
Release | : 2018-10-08 |
Genre | : Science |
ISBN | : 3906980650 |
Printed Edition of the Special Issue Published in Entropy