Infrared Ellipsometry on Semiconductor Layer Structures

Infrared Ellipsometry on Semiconductor Layer Structures
Author: Mathias Schubert
Publisher: Springer Science & Business Media
Total Pages: 216
Release: 2004-11-26
Genre: Science
ISBN: 9783540232490

The study of semiconductor-layer structures using infrared ellipsometry is a rapidly growing field within optical spectroscopy. This book offers basic insights into the concepts of phonons, plasmons and polaritons, and the infrared dielectric function of semiconductors in layered structures. It describes how strain, composition, and the state of the atomic order within complex layer structures of multinary alloys can be determined from an infrared ellipsometry examination. Special emphasis is given to free-charge-carrier properties, and magneto-optical effects. A broad range of experimental examples are described, including multinary alloys of zincblende and wurtzite structure semiconductor materials, and future applications such as organic layer structures and highly correlated electron systems are proposed.

Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth

Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth
Author: Hadis Morkoç
Publisher: John Wiley & Sons
Total Pages: 1311
Release: 2009-07-30
Genre: Technology & Engineering
ISBN: 3527628460

The three volumes of this handbook treat the fundamentals, technology and nanotechnology of nitride semiconductors with an extraordinary clarity and depth. They present all the necessary basics of semiconductor and device physics and engineering together with an extensive reference section. Volume 1 deals with the properties and growth of GaN. The deposition methods considered are: hydride VPE, organometallic CVD, MBE, and liquid/high pressure growth. Additionally, extended defects and their electrical nature, point defects, and doping are reviewed.

III-Nitride Semiconductors and Their Modern Devices

III-Nitride Semiconductors and Their Modern Devices
Author: Bernard Gil
Publisher: Semiconductor Science and Tech
Total Pages: 661
Release: 2013-08-22
Genre: Science
ISBN: 0199681724

All recent developments of nitrides and of their technology are gathered here in a single book, with chapters written by world leaders in the field.

Indium Nitride and Related Alloys

Indium Nitride and Related Alloys
Author: Timothy David Veal
Publisher: CRC Press
Total Pages: 707
Release: 2011-06-03
Genre: Technology & Engineering
ISBN: 1439859612

Written by recognized leaders in this dynamic and rapidly expanding field, Indium Nitride and Related Alloys provides a clear and comprehensive summary of the present state of knowledge in indium nitride (InN) research. It elucidates and clarifies the often confusing and contradictory scientific literature to provide valuable and rigorous insight into the structural, optical, and electronic properties of this quickly emerging semiconductor material and its related alloys. Drawing from both theoretical and experimental perspectives, it provides a thorough review of all data since 2001 when the band gap of InN was identified as 0.7 eV. The superior transport and optical properties of InN and its alloys offer tremendous potential for a wide range of device applications, including high-efficiency solar cells and chemical sensors. Indeed, the now established narrow band gap nature of InN means that the InGaN alloys cover the entire solar spectrum and InAlN alloys span from the infrared to the ultraviolet. However, with unsolved problems including high free electron density, difficulty in characterizing p-type doping, and the lack of a lattice-matched substrate, indium nitride remains perhaps the least understood III-V semiconductor. Covering the epitaxial growth, experimental characterization, theoretical understanding, and device potential of this semiconductor and its alloys, this book is essential reading for both established researchers and those new to the field.

Molecular Beam Epitaxy

Molecular Beam Epitaxy
Author: John Orton
Publisher: OUP Oxford
Total Pages: 529
Release: 2015-06-25
Genre: Science
ISBN: 0191061166

The book is a history of Molecular Beam Epitaxy (MBE) as applied to the growth of semiconductor thin films (note that it does not cover the subject of metal thin films). It begins by examining the origins of MBE, first of all looking at the nature of molecular beams and considering their application to fundamental physics, to the development of nuclear magnetic resonance and to the invention of the microwave MASER. It shows how molecular beams of silane (SiH4) were used to study the nucleation of silicon films on a silicon substrate and how such studies were extended to compound semiconductors such as GaAs. From such surface studies in ultra-high vacuum the technique developed into a method of growing high quality single crystal films of a wide range of semiconductors. Comparing this with earlier evaporation methods of deposition and with other epitaxial deposition methods such as liquid phase and vapour phase epitaxy (LPE and VPE). The text describes the development of MBE machines from the early âhome-madeâ variety to that of commercial equipment and show how MBE was gradually refined to produce high quality films with atomic dimensions. This was much aided by the use of various in-situ surface analysis techniques, such as reflection high energy electron diffraction (RHEED) and mass spectrometry, a feature unique to MBE. It looks at various modified versions of the basic MBE process, then proceed to describe their application to the growth of so-called âlow-dimensional structuresâ (LDS) based on ultra-thin heterostructure films with thickness of order a few molecular monolayers. Further chapters cover the growth of a wide range of different compounds and describe their application to fundamental physics and to the fabrication of electronic and opto-electronic devices. The authors study the historical development of all these aspects and emphasise both the (often unexpected) manner of their discovery and development and the unique features which MBE brings to the growth of extremely complex structures with monolayer accuracy.

Molecular Modeling for the Design of Novel Performance Chemicals and Materials

Molecular Modeling for the Design of Novel Performance Chemicals and Materials
Author: Beena Rai
Publisher: CRC Press
Total Pages: 392
Release: 2012-03-23
Genre: Science
ISBN: 1439840792

Molecular modeling (MM) tools offer significant benefits in the design of industrial chemical plants and material processing operations. While the role of MM in biological fields is well established, in most cases MM works as an accessory in novel products/materials development rather than a tool for direct innovation. As a result, MM engineers and

Gallium Nitride Power Devices

Gallium Nitride Power Devices
Author: Hongyu Yu
Publisher: CRC Press
Total Pages: 301
Release: 2017-07-06
Genre: Science
ISBN: 1351767607

GaN is considered the most promising material candidate in next-generation power device applications, owing to its unique material properties, for example, bandgap, high breakdown field, and high electron mobility. Therefore, GaN power device technologies are listed as the top priority to be developed in many countries, including the United States, the European Union, Japan, and China. This book presents a comprehensive overview of GaN power device technologies, for example, material growth, property analysis, device structure design, fabrication process, reliability, failure analysis, and packaging. It provides useful information to both students and researchers in academic and related industries working on GaN power devices. GaN wafer growth technology is from Enkris Semiconductor, currently one of the leading players in commercial GaN wafers. Chapters 3 and 7, on the GaN transistor fabrication process and GaN vertical power devices, are edited by Dr. Zhihong Liu, who has been working on GaN devices for more than ten years. Chapters 2 and 5, on the characteristics of polarization effects and the original demonstration of AlGaN/GaN heterojunction field-effect transistors, are written by researchers from Southwest Jiaotong University. Chapters 6, 8, and 9, on surface passivation, reliability, and package technologies, are edited by a group of researchers from the Southern University of Science and Technology of China.

Extreme Environment Electronics

Extreme Environment Electronics
Author: John D. Cressler
Publisher: CRC Press
Total Pages: 1041
Release: 2017-12-19
Genre: Technology & Engineering
ISBN: 143987431X

Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world’s foremost experts in extreme environment electronics, the book provides in-depth information on a wide array of topics. It begins by describing the extreme conditions and then delves into a description of suitable semiconductor technologies and the modeling of devices within those technologies. It also discusses reliability issues and failure mechanisms that readers need to be aware of, as well as best practices for the design of these electronics. Continuing beyond just the "paper design" of building blocks, the book rounds out coverage of the design realization process with verification techniques and chapters on electronic packaging for extreme environments. The final set of chapters describes actual chip-level designs for applications in energy and space exploration. Requiring only a basic background in electronics, the book combines theoretical and practical aspects in each self-contained chapter. Appendices supply additional background material. With its broad coverage and depth, and the expertise of the contributing authors, this is an invaluable reference for engineers, scientists, and technical managers, as well as researchers and graduate students. A hands-on resource, it explores what is required to successfully operate electronics in the most demanding conditions.

Silicon Carbide and Related Materials - 2005

Silicon Carbide and Related Materials - 2005
Author: Robert P. Devaty
Publisher:
Total Pages: 878
Release: 2006
Genre: Science
ISBN:

Silicon Carbide (SiC), Gallium Nitride (GaN) and Diamond are examples of wide-bandgap semiconductors having chemical, electrical and optical properties which make them very attractive for the fabrication of high-power and high-frequency electronic devices, as well as light-emitters and sensors which have to operate under harsh conditions.