Fuzzy Stochastic Optimization
Download Fuzzy Stochastic Optimization full books in PDF, epub, and Kindle. Read online free Fuzzy Stochastic Optimization ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Masatoshi Sakawa |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2013-04-19 |
Genre | : Business & Economics |
ISBN | : 9781461428060 |
Although studies on multiobjective mathematical programming under uncertainty have been accumulated and several books on multiobjective mathematical programming under uncertainty have been published (e.g., Stancu-Minasian (1984); Slowinski and Teghem (1990); Sakawa (1993); Lai and Hwang (1994); Sakawa (2000)), there seems to be no book which concerns both randomness of events related to environments and fuzziness of human judgments simultaneously in multiobjective decision making problems. In this book, the authors are concerned with introducing the latest advances in the field of multiobjective optimization under both fuzziness and randomness on the basis of the authors’ continuing research works. Special stress is placed on interactive decision making aspects of fuzzy stochastic multiobjective programming for human-centered systems under uncertainty in most realistic situations when dealing with both fuzziness and randomness. Organization of each chapter is briefly summarized as follows: Chapter 2 is devoted to mathematical preliminaries, which will be used throughout the remainder of the book. Starting with basic notions and methods of multiobjective programming, interactive fuzzy multiobjective programming as well as fuzzy multiobjective programming is outlined. In Chapter 3, by considering the imprecision of decision maker’s (DM’s) judgment for stochastic objective functions and/or constraints in multiobjective problems, fuzzy multiobjective stochastic programming is developed. In Chapter 4, through the consideration of not only the randomness of parameters involved in objective functions and/or constraints but also the experts’ ambiguous understanding of the realized values of the random parameters, multiobjective programming problems with fuzzy random variables are formulated. In Chapter 5, for resolving conflict of decision making problems in hierarchical managerial or public organizations where there exist two DMs who have different priorities in making decisions, two-level programming problems are discussed. Finally, Chapter 6 outlines some future research directions.
Author | : Shuming Wang |
Publisher | : Springer Science & Business Media |
Total Pages | : 255 |
Release | : 2012-03-20 |
Genre | : Computers |
ISBN | : 1441995595 |
In 2014, winner of "Outstanding Book Award" by The Japan Society for Fuzzy Theory and Intelligent Informatics. Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies. The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins by outlining the history and development of the fuzzy random variable before detailing numerous optimization models and applications that include the design of system controls for a dam.
Author | : Springer |
Publisher | : |
Total Pages | : 266 |
Release | : 2012-03-21 |
Genre | : |
ISBN | : 9781441995612 |
Author | : Kaushik Das Sharma |
Publisher | : Springer |
Total Pages | : 310 |
Release | : 2018-08-28 |
Genre | : Technology & Engineering |
ISBN | : 9811312982 |
This book discusses systematic designs of stable adaptive fuzzy logic controllers employing hybridizations of Lyapunov strategy-based approaches/H∞ theory-based approaches and contemporary stochastic optimization techniques. The text demonstrates how candidate stochastic optimization techniques like Particle swarm optimization (PSO), harmony search (HS) algorithms, covariance matrix adaptation (CMA) etc. can be utilized in conjunction with the Lyapunov theory/H∞ theory to develop such hybrid control strategies. The goal of developing a series of such hybridization processes is to combine the strengths of both Lyapunov theory/H∞ theory-based local search methods and stochastic optimization-based global search methods, so as to attain superior control algorithms that can simultaneously achieve desired asymptotic performance and provide improved transient responses. The book also demonstrates how these intelligent adaptive control algorithms can be effectively utilized in real-life applications such as in temperature control for air heater systems with transportation delay, vision-based navigation of mobile robots, intelligent control of robot manipulators etc.
Author | : Biswas, Animesh |
Publisher | : IGI Global |
Total Pages | : 434 |
Release | : 2019-03-22 |
Genre | : Computers |
ISBN | : 1522583025 |
It is frequently observed that most decision-making problems involve several objectives, and the aim of the decision makers is to find the best decision by fulfilling the aspiration levels of all the objectives. Multi-objective decision making is especially suitable for the design and planning steps and allows a decision maker to achieve the optimal or aspired goals by considering the various interactions of the given constraints. Multi-Objective Stochastic Programming in Fuzzy Environments discusses optimization problems with fuzzy random variables following several types of probability distributions and different types of fuzzy numbers with different defuzzification processes in probabilistic situations. The content within this publication examines such topics as waste management, agricultural systems, and fuzzy set theory. It is designed for academicians, researchers, and students.
Author | : Masatoshi Sakawa |
Publisher | : Springer Science & Business Media |
Total Pages | : 319 |
Release | : 2013-11-21 |
Genre | : Mathematics |
ISBN | : 1489916334 |
The main characteristics of the real-world decision-making problems facing humans today are multidimensional and have multiple objectives including eco nomic, environmental, social, and technical ones. Hence, it seems natural that the consideration of many objectives in the actual decision-making process re quires multiobjective approaches rather than single-objective. One ofthe major systems-analytic multiobjective approaches to decision-making under constraints is multiobjective optimization as a generalization of traditional single-objective optimization. Although multiobjective optimization problems differ from single objective optimization problems only in the plurality of objective functions, it is significant to realize that multiple objectives are often noncom mensurable and conflict with each other in multiobjective optimization problems. With this ob servation, in multiobjective optimization, the notion of Pareto optimality or effi ciency has been introduced instead of the optimality concept for single-objective optimization. However, decisions with Pareto optimality or efficiency are not uniquely determined; the final decision must be selected from among the set of Pareto optimal or efficient solutions. Therefore, the question is, how does one find the preferred point as a compromise or satisficing solution with rational pro cedure? This is the starting point of multiobjective optimization. To be more specific, the aim is to determine how one derives a compromise or satisficing so lution of a decision maker (DM), which well represents the subjective judgments, from a Pareto optimal or an efficient solution set.
Author | : Baoding Liu |
Publisher | : Springer |
Total Pages | : 205 |
Release | : 2008-12-28 |
Genre | : Technology & Engineering |
ISBN | : 3540894845 |
Real-life decisions are usually made in the state of uncertainty such as randomness and fuzziness. How do we model optimization problems in uncertain environments? How do we solve these models? In order to answer these questions, this book provides a self-contained, comprehensive and up-to-date presentation of uncertain programming theory, including numerous modeling ideas, hybrid intelligent algorithms, and applications in system reliability design, project scheduling problem, vehicle routing problem, facility location problem, and machine scheduling problem. Researchers, practitioners and students in operations research, management science, information science, system science, and engineering will find this work a stimulating and useful reference.
Author | : Masatoshi Sakawa |
Publisher | : Springer Science & Business Media |
Total Pages | : 347 |
Release | : 2013-11-29 |
Genre | : Business & Economics |
ISBN | : 1461493994 |
Although several books or monographs on multiobjective optimization under uncertainty have been published, there seems to be no book which starts with an introductory chapter of linear programming and is designed to incorporate both fuzziness and randomness into multiobjective programming in a unified way. In this book, five major topics, linear programming, multiobjective programming, fuzzy programming, stochastic programming, and fuzzy stochastic programming, are presented in a comprehensive manner. Especially, the last four topics together comprise the main characteristics of this book, and special stress is placed on interactive decision making aspects of multiobjective programming for human-centered systems in most realistic situations under fuzziness and/or randomness. Organization of each chapter is briefly summarized as follows: Chapter 2 is a concise and condensed description of the theory of linear programming and its algorithms. Chapter 3 discusses fundamental notions and methods of multiobjective linear programming and concludes with interactive multiobjective linear programming. In Chapter 4, starting with clear explanations of fuzzy linear programming and fuzzy multiobjective linear programming, interactive fuzzy multiobjective linear programming is presented. Chapter 5 gives detailed explanations of fundamental notions and methods of stochastic programming including two-stage programming and chance constrained programming. Chapter 6 develops several interactive fuzzy programming approaches to multiobjective stochastic programming problems. Applications to purchase and transportation planning for food retailing are considered in Chapter 7. The book is self-contained because of the three appendices and answers to problems. Appendix A contains a brief summary of the topics from linear algebra. Pertinent results from nonlinear programming are summarized in Appendix B. Appendix C is a clear explanation of the Excel Solver, one of the easiest ways to solve optimization problems, through the use of simple examples of linear and nonlinear programming.
Author | : Freerk A. Lootsma |
Publisher | : Springer Science & Business Media |
Total Pages | : 204 |
Release | : 2013-03-14 |
Genre | : Business & Economics |
ISBN | : 147572618X |
This book starts with the basic concepts of Fuzzy Logic: the membership function, the intersection and the union of fuzzy sets, fuzzy numbers, and the extension principle underlying the algorithmic operations. Several chapters are devoted to applications of Fuzzy Logic in Operations Research: PERT planning with uncertain activity durations, Multi-Criteria Decision Analysis (MCDA) with vague preferential statements, and Multi-Objective Optimization (MOO) with weighted degrees of satisfaction. New items are: Fuzzy PERT using activity durations with triangular membership functions, Fuzzy SMART with a sensitivity analysis based upon Fuzzy Logic, the Additive and the Multiplicative AHP with a similar feature, ELECTRE using the ideas of the AHP and SMART, and a comparative study of the ideal-point methods for MOO. Finally, earlier studies of colour perception illustrate the attempts to find a physiological basis for the set-theoretical and the algorithmic operations in Fuzzy Logic. The last chapter also discusses some key issues in linguistic categorization and the prospects of Fuzzy Logic as a multi-disciplinary research activity. Audience: Researchers and students working in applied mathematics, operations research, management science, business administration, econometrics, industrial engineering, information systems, artificial intelligence, mathematical psychology, and psycho-physics.
Author | : Tilahun, Surafel Luleseged |
Publisher | : IGI Global |
Total Pages | : 327 |
Release | : 2018-06-22 |
Genre | : Computers |
ISBN | : 1522550925 |
When it comes to optimization techniques, in some cases, the available information from real models may not be enough to construct either a probability distribution or a membership function for problem solving. In such cases, there are various theories that can be used to quantify the uncertain aspects. Optimization Techniques for Problem Solving in Uncertainty is a scholarly reference resource that looks at uncertain aspects involved in different disciplines and applications. Featuring coverage on a wide range of topics including uncertain preference, fuzzy multilevel programming, and metaheuristic applications, this book is geared towards engineers, managers, researchers, and post-graduate students seeking emerging research in the field of optimization.