Statistical Methods for Fuzzy Data

Statistical Methods for Fuzzy Data
Author: Reinhard Viertl
Publisher: John Wiley & Sons
Total Pages: 199
Release: 2011-01-25
Genre: Mathematics
ISBN: 0470974567

Statistical data are not always precise numbers, or vectors, or categories. Real data are frequently what is called fuzzy. Examples where this fuzziness is obvious are quality of life data, environmental, biological, medical, sociological and economics data. Also the results of measurements can be best described by using fuzzy numbers and fuzzy vectors respectively. Statistical analysis methods have to be adapted for the analysis of fuzzy data. In this book, the foundations of the description of fuzzy data are explained, including methods on how to obtain the characterizing function of fuzzy measurement results. Furthermore, statistical methods are then generalized to the analysis of fuzzy data and fuzzy a-priori information. Key Features: Provides basic methods for the mathematical description of fuzzy data, as well as statistical methods that can be used to analyze fuzzy data. Describes methods of increasing importance with applications in areas such as environmental statistics and social science. Complements the theory with exercises and solutions and is illustrated throughout with diagrams and examples. Explores areas such quantitative description of data uncertainty and mathematical description of fuzzy data. This work is aimed at statisticians working with fuzzy logic, engineering statisticians, finance researchers, and environmental statisticians. It is written for readers who are familiar with elementary stochastic models and basic statistical methods.

Performance Measurement with Fuzzy Data Envelopment Analysis

Performance Measurement with Fuzzy Data Envelopment Analysis
Author: Ali Emrouznejad
Publisher: Springer
Total Pages: 293
Release: 2013-11-29
Genre: Technology & Engineering
ISBN: 3642413722

The intensity of global competition and ever-increasing economic uncertainties has led organizations to search for more efficient and effective ways to manage their business operations. Data envelopment analysis (DEA) has been widely used as a conceptually simple yet powerful tool for evaluating organizational productivity and performance. Fuzzy DEA (FDEA) is a promising extension of the conventional DEA proposed for dealing with imprecise and ambiguous data in performance measurement problems. This book is the first volume in the literature to present the state-of-the-art developments and applications of FDEA. It is designed for students, educators, researchers, consultants and practicing managers in business, industry, and government with a basic understanding of the DEA and fuzzy logic concepts.

Data Engineering

Data Engineering
Author: Olaf Wolkenhauer
Publisher: John Wiley & Sons
Total Pages: 296
Release: 2004-04-07
Genre: Technology & Engineering
ISBN: 0471464104

Although data engineering is a multi-disciplinary field withapplications in control, decision theory, and the emerging hot areaof bioinformatics, there are no books on the market that make thesubject accessible to non-experts. This book fills the gap in thefield, offering a clear, user-friendly introduction to the maintheoretical and practical tools for analyzing complex systems. Anftp site features the corresponding MATLAB and Mathematical toolsand simulations. Market: Researchers in data management, electrical engineering,computer science, and life sciences.

Fuzzy Cluster Analysis

Fuzzy Cluster Analysis
Author: Frank Höppner
Publisher: John Wiley & Sons
Total Pages: 308
Release: 1999-07-09
Genre: Science
ISBN: 9780471988649

Dieser Band konzentriert sich auf Konzepte, Algorithmen und Anwendungen des Fuzzy Clustering. In sich geschlossen werden Techniken wie das Fuzzy-c-Mittel und die Gustafson-Kessel- und Gath- und Gava-Algorithmen behandelt, wobei vom Leser keine Vorkenntnisse auf dem Gebiet von Fuzzy-Systemen erwartet werden. Durch anschauliche Anwendungsbeispiele eignet sich das Buch als Einführung für Praktiker der Datenanalyse, der Bilderkennung und der angewandten Mathematik. (05/99)

Fundamentals of Statistics with Fuzzy Data

Fundamentals of Statistics with Fuzzy Data
Author: Hung T. Nguyen
Publisher: Springer
Total Pages: 0
Release: 2006-02-28
Genre: Mathematics
ISBN: 3540316973

This book presents basic aspects for a theory of statistics with fuzzy data, together with a set of practical applications. Theories of fuzzy logic and of random closed sets are used as basic ingredients in building statistical concepts and procedures in the context of imprecise data, including coarse data analysis. The book aims at motivating statisticians to examine fuzzy statistics to enlarge the domain of applicability of statistics in general.

Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making

Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making
Author: Cengiz Kahraman
Publisher: Springer
Total Pages: 1386
Release: 2019-07-05
Genre: Technology & Engineering
ISBN: 3030237567

This book includes the proceedings of the Intelligent and Fuzzy Techniques INFUS 2019 Conference, held in Istanbul, Turkey, on July 23–25, 2019. Big data analytics refers to the strategy of analyzing large volumes of data, or big data, gathered from a wide variety of sources, including social networks, videos, digital images, sensors, and sales transaction records. Big data analytics allows data scientists and various other users to evaluate large volumes of transaction data and other data sources that traditional business systems would be unable to tackle. Data-driven and knowledge-driven approaches and techniques have been widely used in intelligent decision-making, and they are increasingly attracting attention due to their importance and effectiveness in addressing uncertainty and incompleteness. INFUS 2019 focused on intelligent and fuzzy systems with applications in big data analytics and decision-making, providing an international forum that brought together those actively involved in areas of interest to data science and knowledge engineering. These proceeding feature about 150 peer-reviewed papers from countries such as China, Iran, Turkey, Malaysia, India, USA, Spain, France, Poland, Mexico, Bulgaria, Algeria, Pakistan, Australia, Lebanon, and Czech Republic.

Fuzzy Data Analysis

Fuzzy Data Analysis
Author: Hans Bandemer
Publisher: Springer Science & Business Media
Total Pages: 351
Release: 2012-12-06
Genre: Mathematics
ISBN: 9401125066

Fuzzy data such as marks, scores, verbal evaluations, imprecise observations, experts' opinions and grey tone pictures, are quite common. In Fuzzy Data Analysis the authors collect their recent results providing the reader with ideas, approaches and methods for processing such data when looking for sub-structures in knowledge bases for an evaluation of functional relationship, e.g. in order to specify diagnostic or control systems. The modelling presented uses ideas from fuzzy set theory and the suggested methods solve problems usually tackled by data analysis if the data are real numbers. Fuzzy Data Analysis is self-contained and is addressed to mathematicians oriented towards applications and to practitioners in any field of application who have some background in mathematics and statistics.

Fuzzy-Set Social Science

Fuzzy-Set Social Science
Author: Charles C. Ragin
Publisher: University of Chicago Press
Total Pages: 374
Release: 2000-08
Genre: Mathematics
ISBN: 9780226702773

In this innovative approach to the practice of social scienceÇharles Ragin explores the use of fuzzy sets to bridge the divide between quantitive and qualitative methods. He argues that fuzzy sets allow a far richer dialogue between ideas and evidence in social research than previously possible.

Fuzzy Sets in Decision Analysis, Operations Research and Statistics

Fuzzy Sets in Decision Analysis, Operations Research and Statistics
Author: Roman Slowiński
Publisher: Springer Science & Business Media
Total Pages: 467
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461556457

Fuzzy Sets in Decision Analysis, Operations Research and Statistics includes chapters on fuzzy preference modeling, multiple criteria analysis, ranking and sorting methods, group decision-making and fuzzy game theory. It also presents optimization techniques such as fuzzy linear and non-linear programming, applications to graph problems and fuzzy combinatorial methods such as fuzzy dynamic programming. In addition, the book also accounts for advances in fuzzy data analysis, fuzzy statistics, and applications to reliability analysis. These topics are covered within four parts: Decision Making, Mathematical Programming, Statistics and Data Analysis, and Reliability, Maintenance and Replacement. The scope and content of the book has resulted from multiple interactions between the editor of the volume, the series editors, the series advisory board, and experts in each chapter area. Each chapter was written by a well-known researcher on the topic and reviewed by other experts in the area. These expert reviewers sometimes became co-authors because of the extent of their contribution to the chapter. As a result, twenty-five authors from twelve countries and four continents were involved in the creation of the 13 chapters, which enhances the international character of the project and gives an idea of how carefully the Handbook has been developed.