Fundamentals of Electromagnetics with MATLAB
Author | : Karl Erik Lonngren |
Publisher | : SciTech Publishing |
Total Pages | : 554 |
Release | : 2007 |
Genre | : Science |
ISBN | : 1891121588 |
Accompanying CD-ROM contains a MATLAB tutorial.
Download Fundamentals Of Electromagnetics With Matlab full books in PDF, epub, and Kindle. Read online free Fundamentals Of Electromagnetics With Matlab ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Karl Erik Lonngren |
Publisher | : SciTech Publishing |
Total Pages | : 554 |
Release | : 2007 |
Genre | : Science |
ISBN | : 1891121588 |
Accompanying CD-ROM contains a MATLAB tutorial.
Author | : Matthew N.O. Sadiku |
Publisher | : CRC Press |
Total Pages | : 709 |
Release | : 2018-07-20 |
Genre | : Technology & Engineering |
ISBN | : 1351365096 |
This fourth edition of the text reflects the continuing increase in awareness and use of computational electromagnetics and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite-difference time-domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. It teaches the readers how to pose, numerically analyze, and solve EM problems, to give them the ability to expand their problem-solving skills using a variety of methods, and to prepare them for research in electromagnetism. Includes new homework problems in each chapter. Each chapter is updated with the current trends in CEM. Adds a new appendix on CEM codes, which covers commercial and free codes. Provides updated MATLAB code.
Author | : Özlem Özgün |
Publisher | : CRC Press |
Total Pages | : 428 |
Release | : 2018-09-03 |
Genre | : Technology & Engineering |
ISBN | : 0429854609 |
This book is a self-contained, programming-oriented and learner-centered book on finite element method (FEM), with special emphasis given to developing MATLAB® programs for numerical modeling of electromagnetic boundary value problems. It provides a deep understanding and intuition of FEM programming by means of step-by-step MATLAB® programs with detailed descriptions, and eventually enabling the readers to modify, adapt and apply the provided programs and formulations to develop FEM codes for similar problems through various exercises. It starts with simple one-dimensional static and time-harmonic problems and extends the developed theory to more complex two- or three-dimensional problems. It supplies sufficient theoretical background on the topic, and it thoroughly covers all phases (pre-processing, main body and post-processing) in FEM. FEM formulations are obtained for boundary value problems governed by a partial differential equation that is expressed in terms of a generic unknown function, and then, these formulations are specialized to various electromagnetic applications together with a post-processing phase. Since the method is mostly described in a general context, readers from other disciplines can also use this book and easily adapt the provided codes to their engineering problems. After forming a solid background on the fundamentals of FEM by means of canonical problems, readers are guided to more advanced applications of FEM in electromagnetics through a survey chapter at the end of the book. Offers a self-contained and easy-to-understand introduction to the theory and programming of finite element method. Covers various applications in the field of static and time-harmonic electromagnetics. Includes one-, two- and three-dimensional finite element codes in MATLAB®. Enables readers to develop finite element programming skills through various MATLAB® codes and exercises. Promotes self-directed learning skills and provides an effective instruction tool.
Author | : Branislav M. Notaros |
Publisher | : |
Total Pages | : 833 |
Release | : 2011 |
Genre | : Electromagnetism |
ISBN | : 9780132473644 |
"Electromagnetics" is a thorough text that enables readers to readily grasp EM fundamentals, develop true problem-solving skills, and really understand and like the material. It is meant as an ""ultimate resource" for undergraduate electromagnetics."
Author | : Dikshitulu K. Kalluri |
Publisher | : CRC Press |
Total Pages | : 862 |
Release | : 2016-04-19 |
Genre | : Technology & Engineering |
ISBN | : 1439838682 |
Readily available commercial software enables engineers and students to perform routine calculations and design without necessarily having a sufficient conceptual understanding of the anticipated solution. The software is so user-friendly that it usually produces a beautiful colored visualization of that solution, often camouflaging the fact that t
Author | : Sergey N. Makarov |
Publisher | : John Wiley & Sons |
Total Pages | : 616 |
Release | : 2015-05-13 |
Genre | : Science |
ISBN | : 1119052467 |
Provides a detailed and systematic description of the Method of Moments (Boundary Element Method) for electromagnetic modeling at low frequencies and includes hands-on, application-based MATLAB® modules with user-friendly and intuitive GUI and a highly visualized interactive output. Includes a full-body computational human phantom with over 120 triangular surface meshes extracted from the Visible Human Project® Female dataset of the National library of Medicine and fully compatible with MATLAB® and major commercial FEM/BEM electromagnetic software simulators. This book covers the basic concepts of computational low-frequency electromagnetics in an application-based format and hones the knowledge of these concepts with hands-on MATLAB® modules. The book is divided into five parts. Part 1 discusses low-frequency electromagnetics, basic theory of triangular surface mesh generation, and computational human phantoms. Part 2 covers electrostatics of conductors and dielectrics, and direct current flow. Linear magnetostatics is analyzed in Part 3. Part 4 examines theory and applications of eddy currents. Finally, Part 5 evaluates nonlinear electrostatics. Application examples included in this book cover all major subjects of low-frequency electromagnetic theory. In addition, this book includes complete or summarized analytical solutions to a large number of quasi-static electromagnetic problems. Each Chapter concludes with a summary of the corresponding MATLAB® modules. Combines fundamental electromagnetic theory and application-oriented computation algorithms in the form of stand alone MATLAB® modules Makes use of the three-dimensional Method of Moments (MoM) for static and quasistatic electromagnetic problems Contains a detailed full-body computational human phantom from the Visible Human Project® Female, embedded implant models, and a collection of homogeneous human shells Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB® is a resource for electrical and biomedical engineering students and practicing researchers, engineers, and medical doctors working on low-frequency modeling and bioelectromagnetic applications.
Author | : Karl F. Warnick |
Publisher | : SciTech Publishing |
Total Pages | : 376 |
Release | : 2020-09-26 |
Genre | : Technology & Engineering |
ISBN | : 9781839530739 |
The revised and updated second edition of this textbook teaches students to create computer codes used to engineer antennas, microwave circuits, and other critical technologies for wireless communications and other applications of electromagnetic fields and waves. Worked code examples are provided for MATLAB technical computing software.
Author | : Raymond C. Rumpf |
Publisher | : Artech House |
Total Pages | : 350 |
Release | : 2022-01-31 |
Genre | : Technology & Engineering |
ISBN | : 1630819271 |
This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.
Author | : Gokhan Apaydin |
Publisher | : John Wiley & Sons |
Total Pages | : 167 |
Release | : 2017-10-16 |
Genre | : Science |
ISBN | : 1119432111 |
An important contribution to the literature that introduces powerful new methods for modeling and simulating radio wave propagation A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various virtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenarios typifying the differing effects of various environments on radio-wave propagation. This valuable text: Addresses groundwave and surface wave propagation Explains radar applications in terms of parabolic equation modeling and simulation approaches Introduces several simple and sophisticated MATLAB scripts Teaches applications that work with a wide range of electromagnetic, acoustic and optical wave propagation modeling Presents the material in a quick-reference format ideal for busy researchers and engineers Radio Wave Propagation and Parabolic Equation Modeling is a critical resource forelectrical, electronics, communication, and computer engineers working on industrial and military applications that rely on the directed propagation of radio waves. It is also a useful reference for advanced engineering students and academic researchers.
Author | : DASH, SAROJ K. |
Publisher | : PHI Learning Pvt. Ltd. |
Total Pages | : 921 |
Release | : 2011-01-01 |
Genre | : Science |
ISBN | : 8120343964 |
The Second Edition of this book, while retaining the contents and style of the first edition, continues to fulfil the require-ments of the course curriculum in Electromagnetic Theory for the undergraduate students of electrical engineering, electronics and telecommunication engineering, and electro-nics and communication engineering. The text covers the modules of the syllabus corresponding to vectors and fields, Maxwell’s equations in integral form and differential form, wave propagation in free space and material media, transmission line analysis and waveguide principles. It explains physical and mathematical aspects of the highly complicated electromagnetic theory in a very simple and lucid manner. This new edition includes : • Two separate chapters on Transmission Line and Waveguide • A thoroughly revised chapter on Plane Wave Propagation • Several new solved and unsolved numerical problems asked in various universities’ examinations