Functional Analysis, Approximation Theory, and Numerical Analysis

Functional Analysis, Approximation Theory, and Numerical Analysis
Author: John Michael Rassias
Publisher: World Scientific
Total Pages: 342
Release: 1994
Genre: Mathematics
ISBN: 9789810207373

This book consists of papers written by outstanding mathematicians. It deals with both theoretical and applied aspects of the mathematical contributions of BANACH, ULAM, and OSTROWSKI, which broaden the horizons of Functional Analysis, Approximation Theory, and Numerical Analysis in accordance with contemporary mathematical standards.

Theoretical Numerical Analysis

Theoretical Numerical Analysis
Author: Kendall Atkinson
Publisher: Springer Science & Business Media
Total Pages: 472
Release: 2001-03-09
Genre: Mathematics
ISBN: 0387951423

This book gives an introduction to functional analysis in a way that is tailored to fit the needs of the researcher or student. The book explains the basic results of functional analysis as well as relevant topics in numerical analysis. Applications of functional analysis are given by considering numerical methods for solving partial differential equations and integral equations. The material is especially useful for researchers and students who wish to work in theoretical numerical analysis and seek a background in the "tools of the trade" covered in this book.

Mathematical Analysis, Approximation Theory and Their Applications

Mathematical Analysis, Approximation Theory and Their Applications
Author: Themistocles M. Rassias
Publisher: Springer
Total Pages: 745
Release: 2016-06-03
Genre: Mathematics
ISBN: 3319312812

Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.

Applied Functional Analysis. Approximation Methods and Computers

Applied Functional Analysis. Approximation Methods and Computers
Author: S.S. Kutateladze
Publisher: CRC Press
Total Pages: 408
Release: 2010-12-12
Genre: Mathematics
ISBN: 9781420050127

This book contains the most remarkable papers of L.V. Kantorovich in applied and numerical mathematics. It explores the principal directions of Kantorovich's research in approximate methods. The book covers descriptive set theory and functional analysis in semi-ordered vector spaces.

Mathematical Analysis I: Approximation Theory

Mathematical Analysis I: Approximation Theory
Author: Naokant Deo
Publisher: Springer Nature
Total Pages: 262
Release: 2020-02-17
Genre: Mathematics
ISBN: 9811511535

This book collects original research papers and survey articles presented at the International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM), held at Delhi Technological University, India, on 23–25 October 2018. Divided into two volumes, it discusses major topics in mathematical analysis and its applications, and demonstrates the versatility and inherent beauty of analysis. It also shows the use of analytical techniques to solve problems and, wherever possible, derive their numerical solutions. This volume addresses major topics, such as operator theory, approximation theory, fixed-point theory, holomorphic functions, summability theory, and analytic functions. It is a valuable resource for students as well as researchers in mathematical sciences.

Methods of Approximation Theory in Complex Analysis and Mathematical Physics

Methods of Approximation Theory in Complex Analysis and Mathematical Physics
Author: Andrei A. Gonchar
Publisher: Springer
Total Pages: 225
Release: 2008-01-03
Genre: Mathematics
ISBN: 3540477926

The book incorporates research papers and surveys written by participants ofan International Scientific Programme on Approximation Theory jointly supervised by Institute for Constructive Mathematics of University of South Florida at Tampa, USA and the Euler International Mathematical Instituteat St. Petersburg, Russia. The aim of the Programme was to present new developments in Constructive Approximation Theory. The topics of the papers are: asymptotic behaviour of orthogonal polynomials, rational approximation of classical functions, quadrature formulas, theory of n-widths, nonlinear approximation in Hardy algebras,numerical results on best polynomial approximations, wavelet analysis. FROM THE CONTENTS: E.A. Rakhmanov: Strong asymptotics for orthogonal polynomials associated with exponential weights on R.- A.L. Levin, E.B. Saff: Exact Convergence Rates for Best Lp Rational Approximation to the Signum Function and for Optimal Quadrature in Hp.- H. Stahl: Uniform Rational Approximation of x .- M. Rahman, S.K. Suslov: Classical Biorthogonal Rational Functions.- V.P. Havin, A. Presa Sague: Approximation properties of harmonic vector fields and differential forms.- O.G. Parfenov: Extremal problems for Blaschke products and N-widths.- A.J. Carpenter, R.S. Varga: Some Numerical Results on Best Uniform Polynomial Approximation of x on 0,1 .- J.S. Geronimo: Polynomials Orthogonal on the Unit Circle with Random Recurrence Coefficients.- S. Khrushchev: Parameters of orthogonal polynomials.- V.N. Temlyakov: The universality of the Fibonacci cubature formulas.

Nonlinear Analysis

Nonlinear Analysis
Author: Qamrul Hasan Ansari
Publisher: Springer
Total Pages: 362
Release: 2014-06-05
Genre: Mathematics
ISBN: 8132218833

Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.

Numerical Analysis of Spectral Methods

Numerical Analysis of Spectral Methods
Author: David Gottlieb
Publisher: SIAM
Total Pages: 167
Release: 1977-01-01
Genre: Technology & Engineering
ISBN: 0898710235

A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.

Approximation Theory

Approximation Theory
Author: George A. Anastassiou
Publisher: Springer Science & Business Media
Total Pages: 554
Release: 1999-12-22
Genre: Mathematics
ISBN: 9780817641511

We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact val ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation Prop erty (GSPP) for almost all known linear approximation operators of ap proximation theory including: trigonometric operators and algebraic in terpolation operators of Lagrange, Hermite-Fejer and Shepard type, also operators of stochastic type, convolution type, wavelet type integral opera tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat ics such as Functional analysis, and outside of mathematics, fields such as computer-aided geometric design (CAGD). Most of the time GSPP meth ods are optimal. Various moduli of smoothness are intensively involved in Part II. Therefore, methods from Part I can be used to calculate exactly the error of global smoothness preservation. It is the first time in the literature that a book has studied GSPP.

Approximation Theory and Approximation Practice, Extended Edition

Approximation Theory and Approximation Practice, Extended Edition
Author: Lloyd N. Trefethen
Publisher: SIAM
Total Pages: 377
Release: 2019-01-01
Genre: Mathematics
ISBN: 1611975948

This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the field’s most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.