Functional Analysis And Valuation Theory
Download Functional Analysis And Valuation Theory full books in PDF, epub, and Kindle. Read online free Functional Analysis And Valuation Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Lawrence Narici |
Publisher | : CRC Press |
Total Pages | : 212 |
Release | : 1971-06-01 |
Genre | : Mathematics |
ISBN | : 9780824714840 |
This book presents functional analysis over arbitrary valued fields and investigates normed spaces and algebras over fields with valuation, with attention given to the case when the norm and the valuation are nonarchimedean. It considers vector spaces over fields with nonarchimedean valuation.
Author | : Erwin Kreyszig |
Publisher | : John Wiley & Sons |
Total Pages | : 706 |
Release | : 1991-01-16 |
Genre | : Mathematics |
ISBN | : 0471504599 |
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry
Author | : Edward Beckenstein |
Publisher | : |
Total Pages | : 192 |
Release | : 1971 |
Genre | : |
ISBN | : |
Author | : Charles Swartz |
Publisher | : CRC Press |
Total Pages | : 624 |
Release | : 1992-01-28 |
Genre | : Mathematics |
ISBN | : 9780824786434 |
Based on an introductory, graduate-level course given by Swartz at New Mexico State U., this textbook, written for students with a moderate knowledge of point set topology and integration theory, explains the principles and theories of functional analysis and their applications, showing the interpla
Author | : |
Publisher | : Elsevier |
Total Pages | : 459 |
Release | : 1979-01-01 |
Genre | : Mathematics |
ISBN | : 0080871461 |
Approximation Theory and Functional Analysis
Author | : Abul Hasan Siddiqi |
Publisher | : CRC Press |
Total Pages | : 536 |
Release | : 2003-09 |
Genre | : Mathematics |
ISBN | : 0824756622 |
The methods of functional analysis have helped solve diverse real-world problems in optimization, modeling, analysis, numerical approximation, and computer simulation. Applied Functional Analysis presents functional analysis results surfacing repeatedly in scientific and technological applications and presides over the most current analytical and numerical methods in infinite-dimensional spaces. This reference highlights critical studies in projection theorem, Riesz representation theorem, and properties of operators in Hilbert space and covers special classes of optimization problems. Supported by 2200 display equations, this guide incorporates hundreds of up-to-date citations.
Author | : Peter Schneider |
Publisher | : Springer Science & Business Media |
Total Pages | : 159 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 3662047284 |
This book grew out of a course which I gave during the winter term 1997/98 at the Universitat Munster. The course covered the material which here is presented in the first three chapters. The fourth more advanced chapter was added to give the reader a rather complete tour through all the important aspects of the theory of locally convex vector spaces over nonarchimedean fields. There is one serious restriction, though, which seemed inevitable to me in the interest of a clear presentation. In its deeper aspects the theory depends very much on the field being spherically complete or not. To give a drastic example, if the field is not spherically complete then there exist nonzero locally convex vector spaces which do not have a single nonzero continuous linear form. Although much progress has been made to overcome this problem a really nice and complete theory which to a large extent is analogous to classical functional analysis can only exist over spherically complete field8. I therefore allowed myself to restrict to this case whenever a conceptual clarity resulted. Although I hope that thi8 text will also be useful to the experts as a reference my own motivation for giving that course and writing this book was different. I had the reader in mind who wants to use locally convex vector spaces in the applications and needs a text to quickly gra8p this theory.
Author | : Hugo D. Junghenn |
Publisher | : CRC Press |
Total Pages | : 541 |
Release | : 2018-04-27 |
Genre | : Mathematics |
ISBN | : 149877329X |
Principles of Analysis: Measure, Integration, Functional Analysis, and Applications prepares readers for advanced courses in analysis, probability, harmonic analysis, and applied mathematics at the doctoral level. The book also helps them prepare for qualifying exams in real analysis. It is designed so that the reader or instructor may select topics suitable to their needs. The author presents the text in a clear and straightforward manner for the readers’ benefit. At the same time, the text is a thorough and rigorous examination of the essentials of measure, integration and functional analysis. The book includes a wide variety of detailed topics and serves as a valuable reference and as an efficient and streamlined examination of advanced real analysis. The text is divided into four distinct sections: Part I develops the general theory of Lebesgue integration; Part II is organized as a course in functional analysis; Part III discusses various advanced topics, building on material covered in the previous parts; Part IV includes two appendices with proofs of the change of the variable theorem and a joint continuity theorem. Additionally, the theory of metric spaces and of general topological spaces are covered in detail in a preliminary chapter . Features: Contains direct and concise proofs with attention to detail Features a substantial variety of interesting and nontrivial examples Includes nearly 700 exercises ranging from routine to challenging with hints for the more difficult exercises Provides an eclectic set of special topics and applications About the Author: Hugo D. Junghenn is a professor of mathematics at The George Washington University. He has published numerous journal articles and is the author of several books, including Option Valuation: A First Course in Financial Mathematics and A Course in Real Analysis. His research interests include functional analysis, semigroups, and probability.
Author | : N. Jacobson |
Publisher | : Springer |
Total Pages | : 304 |
Release | : 1975 |
Genre | : Mathematics |
ISBN | : |
The present volume is the second in the author's series of three dealing with abstract algebra. For an understanding of this volume a certain familiarity with the basic concepts treated in Volume I: groups, rings, fields, homomorphisms, is presup posed. However, we have tried to make this account of linear algebra independent of a detailed knowledge of our first volume. References to specific results are given occasionally but some of the fundamental concepts needed have been treated again. In short, it is hoped that this volume can be read with complete understanding by any student who is mathematically sufficiently mature and who has a familiarity with the standard notions of modern algebra. Our point of view in the present volume is basically the abstract conceptual one. However, from time to time we have deviated somewhat from this. Occasionally formal calculational methods yield sharper results. Moreover, the results of linear algebra are not an end in themselves but are essential tools for use in other branches of mathematics and its applications. It is therefore useful to have at hand methods which are constructive and which can be applied in numerical problems. These methods sometimes necessitate a somewhat lengthier discussion but we have felt that their presentation is justified on the grounds indicated. A stu dent well versed in abstract algebra will undoubtedly observe short cuts. Some of these have been indicated in footnotes. We have included a large number of exercises in the text.
Author | : Bo'az Klartag |
Publisher | : Springer |
Total Pages | : 449 |
Release | : 2012-07-25 |
Genre | : Mathematics |
ISBN | : 9783642298509 |
This collection of original papers related to the Israeli GAFA seminar (on Geometric Aspects of Functional Analysis) from the years 2006 to 2011 continues the long tradition of the previous volumes, which reflect the general trends of Asymptotic Geometric Analysis, understood in a broad sense, and are a source of inspiration for new research. Most of the papers deal with various aspects of the theory, including classical topics in the geometry of convex bodies, inequalities involving volumes of such bodies or more generally, logarithmically-concave measures, valuation theory, probabilistic and isoperimetric problems in the combinatorial setting, volume distribution on high-dimensional spaces and characterization of classical constructions in Geometry and Analysis (like the Legendre and Fourier transforms, derivation and others). All the papers here are original research papers.