Fuel And Energy Production By Bioconversion Of Waste Materials
Download Fuel And Energy Production By Bioconversion Of Waste Materials full books in PDF, epub, and Kindle. Read online free Fuel And Energy Production By Bioconversion Of Waste Materials ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Inamuddin |
Publisher | : Springer Nature |
Total Pages | : 391 |
Release | : 2021-04-20 |
Genre | : Science |
ISBN | : 3030618374 |
This edited book discusses various processes of feedstocks bioconversion such as bioconversion of food waste, human manure, industrial waste, beverage waste, kitchen waste, organic waste, fruit and vegetable, poultry waste, solid waste, agro-industrial waste, cow dung, steroid, lignocellulosic residue, biomass, natural gas etc. Nowadays, the industrial revolution and urbanization have made human life comfortable. However, this requires excess usage of natural resources starting from food and food products, to energy resources, materials as well as chemicals. The excess use of natural resources for human comfort is expected to high fuel prices, decline natural resources as well as cause a huge hike in the cost of raw materials. These factors are pushing researchers to grow environmentally friendly processes and techniques based on inexpensive and sustainable feedstock to accomplish such worldwide targets. Bioconversion, otherwise called biotransformation, is the change of natural materials, for example, plant or animal waste, into usable items or energy sources by microorganisms. Bioconversion is an environmentally friendly benevolent choice to supplant the well-established chemical procedures utilized these days for the production of chemicals and fuels. A variety of alternatives advancements are being considered and are directly accessible to acquire diverse valuable end-products through bioprocesses. This book discusses in detail the process and techniques of bioconversion by focusing on the organic feedstock of animal and plant origin. It brings solutions to the bioconversion of various feedstock into value-added products.
Author | : Anish Khan |
Publisher | : Woodhead Publishing |
Total Pages | : 540 |
Release | : 2021-07-27 |
Genre | : Technology & Engineering |
ISBN | : 0128235276 |
Advanced Technology for the Conversion of Waste into Fuels and Chemicals: Volume 1: Biological Processes presents advanced and combined techniques that can be used to convert waste to energy, including combustion, gasification, paralysis, anaerobic digestion and fermentation. The book focuses on solid waste conversion to fuel and energy and presents the latest advances in the design, manufacture, and application of conversion technologies. Contributors from the fields of physics, chemistry, metallurgy, engineering and manufacturing present a truly trans-disciplinary picture of the field. Chapters cover important aspects surrounding the conversion of solid waste into fuel and chemicals, describing how valuable energy can be recouped from various waste materials. As huge volumes of solid waste are produced globally while huge amounts of energy are produced from fossil fuels, the technologies described in this comprehensive book provide the information necessary to pursue clean, sustainable power from waste material. - Presents the latest advances in waste to energy techniques for converting solid waste to valuable fuel and energy - Brings together contributors from physics, chemistry, metallurgy, engineering and the manufacturing industry - Includes advanced techniques such as combustion, gasification, paralysis, anaerobic digestion and fermentation - Goes far beyond municipal waste, including discussions on recouping valuable energy from a variety of industrial waste materials - Describes how waste to energy technologies present an enormous opportunity for clean, sustainable energy
Author | : |
Publisher | : |
Total Pages | : 990 |
Release | : 1977 |
Genre | : Fuel |
ISBN | : |
Author | : Zhenhong Yuan |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 568 |
Release | : 2018-05-22 |
Genre | : Technology & Engineering |
ISBN | : 311042486X |
The book provides an overview on various microorganisms and their industrialization in energy conversion, such as ethanol fermentation, butanol fermentation, biogas fermentation and fossil energy conversion. It also covers microbial oil production, hydrogen production and electricity generation. The content is up to date and suits well for both researchers and industrial audiences.
Author | : |
Publisher | : |
Total Pages | : 252 |
Release | : 1979 |
Genre | : Agriculture |
ISBN | : |
This directory--the first annual compilation of agriculture-related solar energy research--is designed to provide the scientist, technician, and inventor; government and industry; and farmers and other interest laymen with an overview of the diverse and intense efforts being mounted by our society to find alternate energy sources.
Author | : |
Publisher | : |
Total Pages | : |
Release | : 1977 |
Genre | : Power resources |
ISBN | : |
Author | : |
Publisher | : |
Total Pages | : 220 |
Release | : 1981 |
Genre | : Agriculture |
ISBN | : |
Author | : |
Publisher | : |
Total Pages | : 838 |
Release | : 1978 |
Genre | : Fuel |
ISBN | : |
Author | : Shachi Shah |
Publisher | : Springer Nature |
Total Pages | : 347 |
Release | : 2021-02-19 |
Genre | : Science |
ISBN | : 9811596964 |
This book explores the concept and methods of waste management with a new approach of biological valorization. Waste valorization is a process that aims to reduce, reuse, and recycle the waste into usable, value-added, and environmental benign raw materials which can be a source of energy. The book brings together comprehensive information to assert that waste can be converted into a resource or a raw material for value addition. Waste valorization imbibes the natural recycling principles of zero waste, loop closing, and underlines the importance of sustainable and environmentally friendly alternatives. Drawing upon research and examples from around the world, the book is offering an up-to-date account, and insight into the contours of waste valorization principles, biovalorization technologies for diverse group of wastes including agricultural, municipal, and industrial waste. It further discusses the emerging paradigms of waste valorization, waste biorefineries, valorization technologies for energy, biofuel, and biochemical production. The book meets the growing global needs for a comprehensive and holistic outlook on waste management. It is of interest to teachers, researchers, scientists, capacity builders and policymakers. Also, the book serves as additional reading material for undergraduate and graduate students of biotechnology and environmental sciences.
Author | : Chaudhery Mustansar Hussain |
Publisher | : John Wiley & Sons |
Total Pages | : 628 |
Release | : 2022-01-18 |
Genre | : Science |
ISBN | : 3527348980 |
Biotechnology for Zero Waste The use of biotechnology to minimize waste and maximize resource valorization In Biotechnology for Zero Waste: Emerging Waste Management Techniques, accomplished environmental researchers Drs. Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari deliver a robust exploration of the role of biotechnology in reducing waste and creating a zero-waste environment. The editors provide resources covering perspectives in waste management like anaerobic co-digestion, integrated biosystems, immobilized enzymes, zero waste biorefineries, microbial fuel cell technology, membrane bioreactors, nano biomaterials, and more. Ideal for sustainability professionals, this book comprehensively sums up the state-of-the-art biotechnologies powering the latest advances in zero-waste strategies. The renowned contributors address topics like bioconversion and biotransformation and detail the concept of the circular economy. Biotechnology for Zero Waste effectively guides readers on the path to creating sustainable products from waste. The book also includes: A thorough introduction to modern perspectives on zero waste drives, including anaerobic co-digestion as a smart approach for enhancing biogas production Comprehensive explorations of bioremediation for zero waste, biological degradation systems, and bioleaching and biosorption of waste Practical discussions of bioreactors for zero waste and waste2energy with biotechnology An in-depth examination of emerging technologies, including nanobiotechnology for zero waste and the economics and commercialization of zero waste biotechnologies Perfect for process engineers, natural products, environmental, soil, and inorganic chemists, Biotechnology for Zero Waste: Emerging Waste Management Techniques will also earn a place in the libraries of food technologists, biotechnologists, agricultural scientists, and microbiologists.