From Natural To Artificial Neural Computation
Download From Natural To Artificial Neural Computation full books in PDF, epub, and Kindle. Read online free From Natural To Artificial Neural Computation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jose Mira |
Publisher | : Springer Science & Business Media |
Total Pages | : 1182 |
Release | : 1995-05-24 |
Genre | : Computers |
ISBN | : 9783540594970 |
This volume presents the proceedings of the International Workshop on Artificial Neural Networks, IWANN '95, held in Torremolinos near Malaga, Spain in June 1995. The book contains 143 revised papers selected from a wealth of submissions and five invited contributions; it covers all current aspects of neural computation and presents the state of the art of ANN research and applications. The papers are organized in sections on neuroscience, computational models of neurons and neural nets, organization principles, learning, cognitive science and AI, neurosimulators, implementation, neural networks for perception, and neural networks for communication and control.
Author | : Pijush Samui |
Publisher | : Academic Press |
Total Pages | : 660 |
Release | : 2017-07-18 |
Genre | : Technology & Engineering |
ISBN | : 0128113197 |
Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. - Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more - Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing - Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods
Author | : Michael A. Arbib |
Publisher | : Mit Press |
Total Pages | : 345 |
Release | : 1990 |
Genre | : Computers |
ISBN | : 9780262011204 |
These eleven contributions by leaders in the fields of neuroscience, artificial intelligence, and cognitive science cover the phenomenon of parallelism in both natural and artificial systems, from the neural architecture of the human brain to the electronic architecture of parallel computers.The brain's complex neural architecture not only supports higher mental processes, such as learning, perception, and thought, but also supervises the body's basic physiological operating system and oversees its emergency services of damage control and self-repair. By combining sound empirical observation with elegant theoretical modeling, neuroscientists are rapidly developing a detailed and convincing account of the organization and the functioning of this natural, living parallel machine. At the same time, computer scientists and engineers are devising imaginative parallel computing machines and the programming languages and techniques necessary to use them to create superb new experimental instruments for the study of all parallel systems.Michael A. Arbib is Professor of Computer Science, Neurobiology, and Physiology at the University of Southern California. J. Alan Robinson is University Professor at Syracuse University.Contents: Natural and Artificial Parallel Computation, M. A. Arbib, J. A. Robinson. The Evolution of Computing, R. E. Gomory. The Nature of Parallel Programming, P. Brinch Hansen. Toward General Purpose Parallel Computers, D. May. Applications of Parallel Supercomputers, G. E. Fox. Cooperative Computation in Brains and Computers, M. A. Arbib. Parallel Processing in the Primate Cortex, P. Goldman-Rakic. Neural Darwinism, G. M. Edelman, G. N. Reeke, Jr. How the Brain Rewires Itself, M. Merzenich. Memory-Based Reasoning, D. Waltz. Natural and Artificial Reasoning, J. A. Robinson.
Author | : Geoffrey Hinton |
Publisher | : MIT Press |
Total Pages | : 420 |
Release | : 1999-05-24 |
Genre | : Medical |
ISBN | : 9780262581684 |
Since its founding in 1989 by Terrence Sejnowski, Neural Computation has become the leading journal in the field. Foundations of Neural Computation collects, by topic, the most significant papers that have appeared in the journal over the past nine years. This volume of Foundations of Neural Computation, on unsupervised learning algorithms, focuses on neural network learning algorithms that do not require an explicit teacher. The goal of unsupervised learning is to extract an efficient internal representation of the statistical structure implicit in the inputs. These algorithms provide insights into the development of the cerebral cortex and implicit learning in humans. They are also of interest to engineers working in areas such as computer vision and speech recognition who seek efficient representations of raw input data.
Author | : Robert Kozma |
Publisher | : Academic Press |
Total Pages | : 398 |
Release | : 2023-10-11 |
Genre | : Computers |
ISBN | : 0323958168 |
Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks
Author | : Daniel S. Yeung |
Publisher | : Springer Science & Business Media |
Total Pages | : 89 |
Release | : 2009-11-09 |
Genre | : Computers |
ISBN | : 3642025323 |
Artificial neural networks are used to model systems that receive inputs and produce outputs. The relationships between the inputs and outputs and the representation parameters are critical issues in the design of related engineering systems, and sensitivity analysis concerns methods for analyzing these relationships. Perturbations of neural networks are caused by machine imprecision, and they can be simulated by embedding disturbances in the original inputs or connection weights, allowing us to study the characteristics of a function under small perturbations of its parameters. This is the first book to present a systematic description of sensitivity analysis methods for artificial neural networks. It covers sensitivity analysis of multilayer perceptron neural networks and radial basis function neural networks, two widely used models in the machine learning field. The authors examine the applications of such analysis in tasks such as feature selection, sample reduction, and network optimization. The book will be useful for engineers applying neural network sensitivity analysis to solve practical problems, and for researchers interested in foundational problems in neural networks.
Author | : José Manuel Ferrández Vicente |
Publisher | : Springer |
Total Pages | : 574 |
Release | : 2017-06-10 |
Genre | : Computers |
ISBN | : 3319597736 |
The two volumes LNCS 10337 and 10338 constitute the proceedings of the International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2017, held in Corunna, Spain, in June 2017. The total of 102 full papers was carefully reviewed and selected from 194 submissions during two rounds of reviewing and improvement. The papers are organized in two volumes, one on natural and artificial computation for biomedicine and neuroscience, addressing topics such as theoretical neural computation; models; natural computing in bioinformatics; physiological computing in affective smart environments; emotions; as well as signal processing and machine learning applied to biomedical and neuroscience applications. The second volume deals with biomedical applications, based on natural and artificial computing and addresses topics such as biomedical applications; mobile brain computer interaction; human robot interaction; deep learning; machine learning applied to big data analysis; computational intelligence in data coding and transmission; and applications.
Author | : Haijun Zhang |
Publisher | : Springer Nature |
Total Pages | : 542 |
Release | : 2020-08-12 |
Genre | : Computers |
ISBN | : 981157670X |
This book presents refereed proceedings of the First International Conference on Neural Computing for Advanced Applications, NCAA 2020, held in July, 2020. Due to the COVID-19 pandemic the conference was held online. The 36 full papers and 7 short papers were thorougly reviewed and selected from a total of 113 qualified submissions. The papers present resent research on such topics as neural network theory, and cognitive sciences, machine learning, data mining, data security & privacy protection, and data-driven applications, computational intelligence, nature-inspired optimizers, and their engineering applications, cloud/edge/fog computing, the Internet of Things/Vehicles (IoT/IoV), and their system optimization, control systems, network synchronization, system integration, and industrial artificial intelligence, fuzzy logic, neuro-fuzzy systems, decision making, and their applications in management sciences, computer vision, image processing, and their industrial applications, and natural language processing, machine translation, knowledge graphs, and their applications.
Author | : Subana Shanmuganathan |
Publisher | : Springer |
Total Pages | : 468 |
Release | : 2016-02-03 |
Genre | : Technology & Engineering |
ISBN | : 3319284959 |
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling.
Author | : Mohamad H. Hassoun |
Publisher | : MIT Press |
Total Pages | : 546 |
Release | : 1995 |
Genre | : Computers |
ISBN | : 9780262082396 |
A systematic account of artificial neural network paradigms that identifies fundamental concepts and major methodologies. Important results are integrated into the text in order to explain a wide range of existing empirical observations and commonly used heuristics.