From Globular Proteins to Amyloids

From Globular Proteins to Amyloids
Author: Irena Roterman-Konieczna
Publisher: Elsevier
Total Pages: 280
Release: 2019-10-15
Genre: Medical
ISBN: 0081029829

From Globular Proteins to Amyloids proposes a model and mechanism for explaining protein misfolding. Concepts presented are based on a model originally intended to show how proteins attain their native conformations. This model is quantitative in nature and founded upon arguments derived from information theory. It facilitates prediction and simulation of the amyloid fibrillation process, also identifying the progressive changes that occur in native proteins that lead to the emergence of amyloid aggregations. - Introduces basic rules for protein folding, along with the conditions that result in misfolding - Presents research that lies in treating the aqueous environment as a continuum rather than a set of individual water molecules (i.e. the classic representation) - Provides practical applications for helping the prevention of amyloidosis and improving drug design

Lipids in Protein Misfolding

Lipids in Protein Misfolding
Author: Olga Gursky
Publisher: Springer
Total Pages: 270
Release: 2015-07-06
Genre: Science
ISBN: 3319173448

​Protein conversion from a water-soluble native conformation to the insoluble aggregates and fibrils, which can deposit in amyloid plaques, underlies more than 20 human diseases, representing a major public health problem and a scientific challenge. Such a conversion is called protein misfolding. Protein misfolding can also involve errors in the topology of the folded proteins and their assembly in lipid membranes. Lipids are found in nearly all amyloid deposits in vivo, and can critically influence protein misfolding in vitro and in vivo in many different ways. This book focuses on recent advances in our understanding of the role of lipids in modulating the misfolding of various proteins. The main emphasis is on the basic biophysical studies that address molecular basis of protein misfolding and amyloid formation, and the role of lipids in this complex process.

Human Prion Diseases

Human Prion Diseases
Author:
Publisher: Elsevier
Total Pages: 520
Release: 2018-06-07
Genre: Medical
ISBN: 0444639535

Human Prion Diseases, Volume 153 is designed to update the reader on the latest advances and clinical aspects of prion diseases. The book is organized into five sections, including the pathophysiology of prions and a description of animal and human diseases. This is followed by detailed reports on recent advances in diagnosis strategies for the development of novel anti-prion molecules and possible designs of clinical trials in such a rare disease. An introductory chapter gives an extensive historical background of prion research, with a final chapter highlighting recent progress, and more importantly, unsolved problems. - Offers an authoritative overview of prion diseases in humans, detailing the pathogenesis of the disease, clinical investigations, and the diagnosis of both the genetic and acquired forms - Provides clarity and context by presenting prion diseases in relation to other neurodegenerative diseases in humans - Emphasizes the unique properties of prion diseases and consequent problems they can cause, both clinically and in public health terms

Fibrous Proteins: Amyloids, Prions and Beta Proteins

Fibrous Proteins: Amyloids, Prions and Beta Proteins
Author: John M. Squire
Publisher: Elsevier
Total Pages: 329
Release: 2006-12-12
Genre: Science
ISBN: 0080468950

Amyloids, Prions and Beta Proteins is the last volume of the three-part thematic series on Fibrous Proteins in the Advances in Protein Chemistry serial. Fibrous proteins act as molecular scaffolds in cells providing the supporting structures of our skeletons, bones, tendons, cartilage, and skin. They define the mechanical properties of our internal hollow organs such as the intestines, heart, and blood vessels. This volume covers such topics as Beta-Structures in Fibrous Proteins; B-Silks: Enhancing and Controlling Aggregation; Beta-Rolls, Beta-Helices and Other Beta-Solenoid Proteins; Natural Triple B-Stranded Fibrous Folds; Structure, Function and Amyloidogenesis of Fungal Prions: Filament Polymorphism and Prion Variants; X-Ray Fiber and powder Diffraction of PRP Prion Peptides; From the Polymorphism of Amyloid Fibrils to Their Assembly Mechanism and Cytotoxicity; Structural Models of Amyloid-like Fibrils.

Protein Misfolding, Aggregation and Conformational Diseases

Protein Misfolding, Aggregation and Conformational Diseases
Author: Vladimir N. Uversky
Publisher: Springer Science & Business Media
Total Pages: 538
Release: 2007-05-26
Genre: Medical
ISBN: 0387365346

The second volume continues to fill the gap in protein review and protocol literature. It does this while summarizing recent achievements in the understanding of the relationships between protein misfoldings, aggregation, and development of protein deposition disorders. The focus of Part B is the molecular basis of differential disorders.

Protein Homeostasis

Protein Homeostasis
Author: Richard I. Morimoto
Publisher:
Total Pages: 0
Release: 2012
Genre: Biological transport
ISBN: 9781936113064

Proper folding of proteins is crucial for cell function. Chaperones and enzymes that post-translationally modify newly synthesized proteins help ensure that proteins fold correctly, and the unfolded protein response functions as a homeostatic mechanism that removes misfolded proteins when cells are stressed. This book covers the entire spectrum of proteostasis in healthy cells and the diseases that result when control of protein production, protein folding, and protein degradation goes awry.

Protein Self-Assembly

Protein Self-Assembly
Author: Jennifer J. McManus
Publisher: Humana
Total Pages: 266
Release: 2020-08-08
Genre: Science
ISBN: 9781493996803

This volume explores experimental and computational approaches to measuring the most widely studied protein assemblies, including condensed liquid phases, aggregates, and crystals. The chapters in this book are organized into three parts: Part One looks at the techniques used to measure protein-protein interactions and equilibrium protein phases in dilute and concentrated protein solutions; Part Two describes methods to measure kinetics of aggregation and to characterize the assembled state; and Part Three details several different computational approaches that are currently used to help researchers understand protein self-assembly. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Protein Self-Assembly: Methods and Protocols is a valuable resource for researchers who are interested in learning more about this developing field.

Protein Physics

Protein Physics
Author: Alexei V. Finkelstein
Publisher: Elsevier
Total Pages: 530
Release: 2016-06-22
Genre: Science
ISBN: 0081012365

Protein Physics: A Course of Lectures covers the most general problems of protein structure, folding and function. It describes key experimental facts and introduces concepts and theories, dealing with fibrous, membrane, and water-soluble globular proteins, in both their native and denatured states. The book systematically summarizes and presents the results of several decades of worldwide fundamental research on protein physics, structure, and folding, describing many physical models that help readers make estimates and predictions of physical processes that occur in proteins. New to this revised edition is the inclusion of novel information on amyloid aggregation, natively disordered proteins, protein folding in vivo, protein motors, misfolding, chameleon proteins, advances in protein engineering & design, and advances in the modeling of protein folding. Further, the book provides problems with solutions, many new and updated references, and physical and mathematical appendices. In addition, new figures (including stereo drawings, with a special appendix showing how to use them) are added, making this an ideal resource for graduate and advanced undergraduate students and researchers in academia in the fields of biophysics, physics, biochemistry, biologists, biotechnology, and chemistry. - Fully revised and expanded new edition based on the latest research developments in protein physics - Written by the world's top expert in the field - Deals with fibrous, membrane, and water-soluble globular proteins, in both their native and denatured states - Summarizes, in a systematic form, the results of several decades of worldwide fundamental research on protein physics and their structure and folding - Examines experimental data on protein structure in the post-genome era

Protein Folding in Silico

Protein Folding in Silico
Author: Irena Roterman-Konieczna
Publisher: Elsevier
Total Pages: 241
Release: 2012-10-04
Genre: Science
ISBN: 1908818255

Protein folding is a process by which a protein structure assumes its functional shape of conformation, and has been the subject of research since the publication of the first software tool for protein structure prediction. Protein folding in silico approaches this issue by introducing an ab initio model that attempts to simulate as far as possible the folding process as it takes place in vivo, and attempts to construct a mechanistic model on the basis of the predictions made. The opening chapters discuss the early stage intermediate and late stage intermediate models, followed by a discussion of structural information that affects the interpretation of the folding process. The second half of the book covers a variety of topics including ligand binding site recognition, the "fuzzy oil drop" model and its use in simulation of the polypeptide chain, and misfolded proteins. The book ends with an overview of a number of other ab initio methods for protein structure predictions and some concluding remarks. - Discusses a range of ab initio models for protein structure prediction - Introduces a unique model based on experimental observations - Describes various methods for the quantitative assessment of the presented models from the viewpoint of information theory