Vibrations of Elastic Plates

Vibrations of Elastic Plates
Author: Yi-Yuan Yu
Publisher: Springer Science & Business Media
Total Pages: 234
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1461223385

This book is based on my experiences as a teacher and as a researcher for more than four decades. When I started teaching in the early 1950s, I became interested in the vibrations of plates and shells. Soon after I joined the Polytechnic Institute of Brooklyn as a professor, I began working busily on my research in vibrations of sandwich and layered plates and shells, and then teaching a graduate course on the same subject. Although I tried to put together my lecture notes into a book, I never finished it. Many years later, I came to the New Jersey Institute of Technology as the dean of engineering. When I went back to teaching and looked for some research areas to work on, I came upon laminated composites and piezoelectric layers, which appeared to be natural extensions of sandwiches. Working on these for the last several years has brought me a great deal of joy, since I still am able to find my work relevant. At least I can claim that I still am pursuing life-long learning as it is advocated by educators all over the country. This book is based on the research results I accumulated during these two periods of my work, the first on vibrations and dynamical model ing of sandwiches, and the second on laminated composites and piezoelec tric layers.

An Introduction to the Mathematical Theory of Vibrations of Elastic Plates

An Introduction to the Mathematical Theory of Vibrations of Elastic Plates
Author: Raymond David Mindlin
Publisher: World Scientific
Total Pages: 211
Release: 2006
Genre: Technology & Engineering
ISBN: 9812772499

This book by the late R D Mindlin is destined to become a classic introduction to the mathematical aspects of two-dimensional theories of elastic plates. It systematically derives the two-dimensional theories of anisotropic elastic plates from the variational formulation of the three-dimensional theory of elasticity by power series expansions. The uniqueness of two-dimensional problems is also examined from the variational viewpoint. The accuracy of the two-dimensional equations is judged by comparing the dispersion relations of the waves that the two-dimensional theories can describe with prediction from the three-dimensional theory. Discussing mainly high-frequency dynamic problems, it is also useful in traditional applications in structural engineering as well as provides the theoretical foundation for acoustic wave devices. Sample Chapter(s). Chapter 1: Elements of the Linear Theory of Elasticity (416 KB). Contents: Elements of the Linear Theory of Elasticity; Solutions of the Three-Dimensional Equations; Infinite Power Series of Two-Dimensional Equations; Zero-Order Approximation; First-Order Approximation; Intermediate Approximations. Readership: Researchers in mechanics, civil and mechanical engineering and applied mathematics.

Vibrations of Elastic Systems

Vibrations of Elastic Systems
Author: Edward B. Magrab
Publisher: Springer Science & Business Media
Total Pages: 499
Release: 2012-01-12
Genre: Technology & Engineering
ISBN: 9400726724

This work presents a unified approach to the vibrations of elastic systems as applied to MEMS devices, mechanical components, and civil structures. Applications include atomic force microscopes, energy harvesters, and carbon nanotubes and consider such complicating effects as squeeze film damping, viscous fluid loading, in-plane forces, and proof mass interactions with their elastic supports. These effects are analyzed as single degree-of-freedom models and as more realistic elastic structures. The governing equations and boundary conditions for beams, plates, and shells with interior and boundary attachments are derived by applying variational calculus to an expression describing the energy of the system. The advantages of this approach regarding the generation of orthogonal functions and the Rayleigh-Ritz method are demonstrated. A large number of graphs and tables are given to show the impact of various factors on the systems’ natural frequencies, mode shapes, and responses.

Energy Principles and Variational Methods in Applied Mechanics

Energy Principles and Variational Methods in Applied Mechanics
Author: J. N. Reddy
Publisher: John Wiley & Sons
Total Pages: 1069
Release: 2017-07-21
Genre: Technology & Engineering
ISBN: 1119087392

A comprehensive guide to using energy principles and variational methods for solving problems in solid mechanics This book provides a systematic, highly practical introduction to the use of energy principles, traditional variational methods, and the finite element method for the solution of engineering problems involving bars, beams, torsion, plane elasticity, trusses, and plates. It begins with a review of the basic equations of mechanics, the concepts of work and energy, and key topics from variational calculus. It presents virtual work and energy principles, energy methods of solid and structural mechanics, Hamilton’s principle for dynamical systems, and classical variational methods of approximation. And it takes a more unified approach than that found in most solid mechanics books, to introduce the finite element method. Featuring more than 200 illustrations and tables, this Third Edition has been extensively reorganized and contains much new material, including a new chapter devoted to the latest developments in functionally graded beams and plates. Offers clear and easy-to-follow descriptions of the concepts of work, energy, energy principles and variational methods Covers energy principles of solid and structural mechanics, traditional variational methods, the least-squares variational method, and the finite element, along with applications for each Provides an abundance of examples, in a problem-solving format, with descriptions of applications for equations derived in obtaining solutions to engineering structures Features end-of-the-chapter problems for course assignments, a Companion Website with a Solutions Manual, Instructor's Manual, figures, and more Energy Principles and Variational Methods in Applied Mechanics, Third Edition is both a superb text/reference for engineering students in aerospace, civil, mechanical, and applied mechanics, and a valuable working resource for engineers in design and analysis in the aircraft, automobile, civil engineering, and shipbuilding industries.

Formulas for Dynamics, Acoustics and Vibration

Formulas for Dynamics, Acoustics and Vibration
Author: Robert D. Blevins
Publisher: John Wiley & Sons
Total Pages: 464
Release: 2016-05-03
Genre: Technology & Engineering
ISBN: 1119038219

With Over 60 tables, most with graphic illustration, and over 1000 formulas, Formulas for Dynamics, Acoustics, and Vibration will provide an invaluable time-saving source of concise solutions for mechanical, civil, nuclear, petrochemical and aerospace engineers and designers. Marine engineers and service engineers will also find it useful for diagnosing their machines that can slosh, rattle, whistle, vibrate, and crack under dynamic loads.

Vibrations of Shells and Plates

Vibrations of Shells and Plates
Author: Werner Soedel
Publisher: CRC Press
Total Pages: 594
Release: 2004-08-11
Genre: Mathematics
ISBN: 0203026306

With increasingly sophisticated structures involved in modern engineering, knowledge of the complex vibration behavior of plates, shells, curved membranes, rings, and other complex structures is essential for today‘s engineering students, since the behavior is fundamentally different than that of simple structures such as rods and beams. Now in its

Vibration of Continuous Systems

Vibration of Continuous Systems
Author: Singiresu S. Rao
Publisher: John Wiley & Sons
Total Pages: 816
Release: 2019-03-06
Genre: Technology & Engineering
ISBN: 1119424143

A revised and up-to-date guide to advanced vibration analysis written by a noted expert The revised and updated second edition of Vibration of Continuous Systems offers a guide to all aspects of vibration of continuous systems including: derivation of equations of motion, exact and approximate solutions and computational aspects. The author—a noted expert in the field—reviews all possible types of continuous structural members and systems including strings, shafts, beams, membranes, plates, shells, three-dimensional bodies, and composite structural members. Designed to be a useful aid in the understanding of the vibration of continuous systems, the book contains exact analytical solutions, approximate analytical solutions, and numerical solutions. All the methods are presented in clear and simple terms and the second edition offers a more detailed explanation of the fundamentals and basic concepts. Vibration of Continuous Systems revised second edition: Contains new chapters on Vibration of three-dimensional solid bodies; Vibration of composite structures; and Numerical solution using the finite element method Reviews the fundamental concepts in clear and concise language Includes newly formatted content that is streamlined for effectiveness Offers many new illustrative examples and problems Presents answers to selected problems Written for professors, students of mechanics of vibration courses, and researchers, the revised second edition of Vibration of Continuous Systems offers an authoritative guide filled with illustrative examples of the theory, computational details, and applications of vibration of continuous systems.

Vibration Analysis Of Plates By The Superposition Method

Vibration Analysis Of Plates By The Superposition Method
Author: Daniel J Gorman
Publisher: World Scientific
Total Pages: 383
Release: 1999-05-21
Genre: Technology & Engineering
ISBN: 9814495468

The elegance and logic of the superposition method have made it a highly attractive analytical procedure for obtaining accurate mathematical solutions to plate vibration problems. Its applicability to vast families of these problems, ranging from the dynamic behaviour of isotropic and orthotropic plates to laminated plate behaviour, is well demonstrated in the technical literature.Now, at last, a comprehensive book is made available to those who wish to use this powerful analytical technique. Beginning with a thorough and lucid introduction to the superposition method as it applies to free vibration of thin isotropic rectangular plates, with all combinations of classical boundary conditions, the book describes procedures for handling vast families of realistic practical plate vibration problems. These include orthotropic plates, point-supported plates, plates resting on elastic edge supports, plates with in-plane forces, buckling of plates, etc. The reader is subsequently introduced to utilization of the superposition method for the analysis of thick Mindlin plates as well as transverse-shear-deformable laminated plates. Particular emphasis is placed on plate free vibration analysis, with a list of pertinent publications attached to each chapter.The superposition method is unique in that all solutions obtained satisfy the governing differential equations exactly throughout the entire domain of the plate. The boundary conditions are satisfied to any desired degree of accuracy.Despite the attractive features of this analytical method, many researchers and designers have access only to published papers related to particular problems. With this new book, they have for the first time a comprehensive, illustrated description of the means of exploiting the superposition method. They will be able to prepare their own computer schemes and analyse any plate vibration problem of interest.

Vibrations of Shells and Rods

Vibrations of Shells and Rods
Author: Khanh C. Le
Publisher: Springer Science & Business Media
Total Pages: 415
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 3642599117

Intended for engineers who deal with vibrations of rods and shells in their everyday practice but who also wish to understand the subject from the mathematical point-of-view, the results contained here concerning high-frequency vibrations may be new to many. The book serves equally well as an advanced textbook, while remaining of interest to mathematicians who seek applications of the variational and asymptotic methods in elasticity and piezoelectricity. Only a minimum knowledge in advanced calculus and continuum mechanics is assumed on the part of the reader.

Theories and Applications of Plate Analysis

Theories and Applications of Plate Analysis
Author: Rudolph Szilard
Publisher: John Wiley & Sons
Total Pages: 1062
Release: 2004-01-02
Genre: Technology & Engineering
ISBN: 9780471429890

This book by a renowned structural engineer offers comprehensive coverage of both static and dynamic analysis of plate behavior, including classical, numerical, and engineering solutions. It contains more than 100 worked examples showing step by step how the various types of analysis are performed.