Frames And Harmonic Analysis
Download Frames And Harmonic Analysis full books in PDF, epub, and Kindle. Read online free Frames And Harmonic Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Peter G. Casazza |
Publisher | : Springer Science & Business Media |
Total Pages | : 492 |
Release | : 2012-09-14 |
Genre | : Mathematics |
ISBN | : 0817683739 |
Hilbert space frames have long served as a valuable tool for signal and image processing due to their resilience to additive noise, quantization, and erasures, as well as their ability to capture valuable signal characteristics. More recently, finite frame theory has grown into an important research topic in its own right, with a myriad of applications to pure and applied mathematics, engineering, computer science, and other areas. The number of research publications, conferences, and workshops on this topic has increased dramatically over the past few years, but no survey paper or monograph has yet appeared on the subject. Edited by two of the leading experts in the field, Finite Frames aims to fill this void in the literature by providing a comprehensive, systematic study of finite frame theory and applications. With carefully selected contributions written by highly experienced researchers, it covers topics including: * Finite Frame Constructions; * Optimal Erasure Resilient Frames; * Quantization of Finite Frames; * Finite Frames and Compressed Sensing; * Group and Gabor Frames; * Fusion Frames. Despite the variety of its chapters' source and content, the book's notation and terminology are unified throughout and provide a definitive picture of the current state of frame theory. With a broad range of applications and a clear, full presentation, this book is a highly valuable resource for graduate students and researchers across disciplines such as applied harmonic analysis, electrical engineering, quantum computing, medicine, and more. It is designed to be used as a supplemental textbook, self-study guide, or reference book.
Author | : Ole Christensen |
Publisher | : Birkhäuser |
Total Pages | : 719 |
Release | : 2016-05-24 |
Genre | : Mathematics |
ISBN | : 3319256130 |
This revised and expanded monograph presents the general theory for frames and Riesz bases in Hilbert spaces as well as its concrete realizations within Gabor analysis, wavelet analysis, and generalized shift-invariant systems. Compared with the first edition, more emphasis is put on explicit constructions with attractive properties. Based on the exiting development of frame theory over the last decade, this second edition now includes new sections on the rapidly growing fields of LCA groups, generalized shift-invariant systems, duality theory for as well Gabor frames as wavelet frames, and open problems in the field. Key features include: *Elementary introduction to frame theory in finite-dimensional spaces * Basic results presented in an accessible way for both pure and applied mathematicians * Extensive exercises make the work suitable as a textbook for use in graduate courses * Full proofs includ ed in introductory chapters; only basic knowledge of functional analysis required * Explicit constructions of frames and dual pairs of frames, with applications and connections to time-frequency analysis, wavelets, and generalized shift-invariant systems * Discussion of frames on LCA groups and the concrete realizations in terms of Gabor systems on the elementary groups; connections to sampling theory * Selected research topics presented with recommendations for more advanced topics and further readin g * Open problems to stimulate further research An Introduction to Frames and Riesz Bases will be of interest to graduate students and researchers working in pure and applied mathematics, mathematical physics, and engineering. Professionals working in digital signal processing who wish to understand the theory behind many modern signal processing tools may also find this book a useful self-study reference. Review of the first edition: "Ole Christensen’s An Introduction to Frames and Riesz Bases is a first-rate introduction to the field ... . The book provides an excellent exposition of these topics. The material is broad enough to pique the interest of many readers, the included exercises supply some interesting challenges, and the coverage provides enough background for those new to the subject to begin conducting original research." — Eric S. Weber, American Mathematical Monthly, Vol. 112, February, 2005
Author | : Yeonhyang Kim |
Publisher | : American Mathematical Soc. |
Total Pages | : 343 |
Release | : 2018-04-27 |
Genre | : Education |
ISBN | : 1470436191 |
This volume contains the proceedings of the AMS Special Sessions on Frames, Wavelets and Gabor Systems and Frames, Harmonic Analysis, and Operator Theory, held from April 16-17, 2016, at North Dakota State University in Fargo, North Dakota. The papers appearing in this volume cover frame theory and applications in three specific contexts: frame constructions and applications, Fourier and harmonic analysis, and wavelet theory.
Author | : Brigitte Forster |
Publisher | : Springer Science & Business Media |
Total Pages | : 265 |
Release | : 2010 |
Genre | : Mathematics |
ISBN | : 0817648909 |
Written by internationally renowned mathematicians, this state-of-the-art textbook examines four research directions in harmonic analysis and features some of the latest applications in the field. The work is the first one that combines spline theory, wavelets, frames, and time-frequency methods leading up to a construction of wavelets on manifolds other than Rn. Four Short Courses on Harmonic Analysis is intended as a graduate-level textbook for courses or seminars on harmonic analysis and its applications. The work is also an excellent reference or self-study guide for researchers and practitioners with diverse mathematical backgrounds working in different fields such as pure and applied mathematics, image and signal processing engineering, mathematical physics, and communication theory.
Author | : Barry Simon |
Publisher | : |
Total Pages | : 749 |
Release | : 2015 |
Genre | : Mathematical analysis |
ISBN | : 9781470411039 |
A Comprehensive Course in Analysis by Poincar Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis
Author | : Christopher Heil |
Publisher | : Springer Science & Business Media |
Total Pages | : 390 |
Release | : 2007-08-02 |
Genre | : Mathematics |
ISBN | : 0817645047 |
This self-contained volume in honor of John J. Benedetto covers a wide range of topics in harmonic analysis and related areas. These include weighted-norm inequalities, frame theory, wavelet theory, time-frequency analysis, and sampling theory. The chapters are clustered by topic to provide authoritative expositions that will be of lasting interest. The original papers collected are written by prominent researchers and professionals in the field. The book pays tribute to John J. Benedetto’s achievements and expresses an appreciation for the mathematical and personal inspiration he has given to so many students, co-authors, and colleagues.
Author | : Christopher Heil |
Publisher | : Springer Science & Business Media |
Total Pages | : 549 |
Release | : 2011 |
Genre | : Mathematics |
ISBN | : 0817646868 |
This textbook is a self-contained introduction to the abstract theory of bases and redundant frame expansions and their use in both applied and classical harmonic analysis. The four parts of the text take the reader from classical functional analysis and basis theory to modern time-frequency and wavelet theory. Extensive exercises complement the text and provide opportunities for learning-by-doing, making the text suitable for graduate-level courses. The self-contained presentation with clear proofs is accessible to graduate students, pure and applied mathematicians, and engineers interested in the mathematical underpinnings of applications.
Author | : Matthew Hirn |
Publisher | : Springer Nature |
Total Pages | : 444 |
Release | : 2021-09-01 |
Genre | : Mathematics |
ISBN | : 3030696375 |
John J. Benedetto has had a profound influence not only on the direction of harmonic analysis and its applications, but also on the entire community of people involved in the field. The chapters in this volume – compiled on the occasion of his 80th birthday – are written by leading researchers in the field and pay tribute to John’s many significant and lasting achievements. Covering a wide range of topics in harmonic analysis and related areas, these chapters are organized into four main parts: harmonic analysis, wavelets and frames, sampling and signal processing, and compressed sensing and optimization. An introductory chapter also provides a brief overview of John’s life and mathematical career. This volume will be an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics.
Author | : Frédéric Hélein |
Publisher | : Cambridge University Press |
Total Pages | : 298 |
Release | : 2002-06-13 |
Genre | : Mathematics |
ISBN | : 9780521811606 |
Author | : Karlheinz Gröchenig |
Publisher | : Springer Science & Business Media |
Total Pages | : 367 |
Release | : 2013-12-01 |
Genre | : Technology & Engineering |
ISBN | : 1461200032 |
Time-frequency analysis is a modern branch of harmonic analysis. It com prises all those parts of mathematics and its applications that use the struc ture of translations and modulations (or time-frequency shifts) for the anal ysis of functions and operators. Time-frequency analysis is a form of local Fourier analysis that treats time and frequency simultaneously and sym metrically. My goal is a systematic exposition of the foundations of time-frequency analysis, whence the title of the book. The topics range from the elemen tary theory of the short-time Fourier transform and classical results about the Wigner distribution via the recent theory of Gabor frames to quantita tive methods in time-frequency analysis and the theory of pseudodifferential operators. This book is motivated by applications in signal analysis and quantum mechanics, but it is not about these applications. The main ori entation is toward the detailed mathematical investigation of the rich and elegant structures underlying time-frequency analysis. Time-frequency analysis originates in the early development of quantum mechanics by H. Weyl, E. Wigner, and J. von Neumann around 1930, and in the theoretical foundation of information theory and signal analysis by D.