Fundamentals and Applications of Fourier Transform Mass Spectrometry

Fundamentals and Applications of Fourier Transform Mass Spectrometry
Author: Philippe Schmitt-Kopplin
Publisher: Elsevier
Total Pages: 778
Release: 2019-08-11
Genre: Science
ISBN: 0128140143

Fundamentals and Applications of Fourier Transform Mass Spectrometry is the first book to delve into the underlying principles on the topic and their linkage to industrial applications. Drs. Schmitt-Kopplin and Kanawati have brought together a team of leading experts in their respective fields to present this technique from many different perspectives, describing, at length, the pros and cons of FT-ICR and Orbitrap. Numerous examples help researchers decide which instruments to use for their particular scientific problem and which data analysis methods should be applied to get the most out of their data. Covers FT-ICR-MS and Orbitrap’s fundamentals, enhancing researcher knowledge Includes details on ion sources, data processing, chemical analysis and imaging Provides examples across the wide spectrum of applications, including omics, environmental, chemical, pharmaceutical and food analysis

FT-ICR/MS

FT-ICR/MS
Author: Bruce Asamoto
Publisher: Wiley-VCH
Total Pages: 326
Release: 1991
Genre: Fourier transform spectroscopy
ISBN:

Practical Aspects of Trapped Ion Mass Spectrometry, Volume IV

Practical Aspects of Trapped Ion Mass Spectrometry, Volume IV
Author: Raymond E. March
Publisher: CRC Press
Total Pages: 952
Release: 2010-05-25
Genre: Science
ISBN: 1420083724

Reflecting the substantial increase in popularity of quadrupole ion traps and Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers, Practical Aspects of Trapped Ion Mass Spectrometry, Volume IV: Theory and Instrumentation explores the historical origins of the latest advances in this expanding field. It covers new methods for trapp

Asphaltenes, Heavy Oils, and Petroleomics

Asphaltenes, Heavy Oils, and Petroleomics
Author: Oliver C. Mullins
Publisher: Springer Science & Business Media
Total Pages: 677
Release: 2007-11-08
Genre: Science
ISBN: 0387689036

With substantial contributions from experienced industrial scientists and engineers, this work will have real application towards improving process efficiency and improvement in the trillion-dollar global petroleum industry. It presents an overview of the emerging field of petroleomics, which endeavors to understand the fundamental components of crude oil. Petroleomics promises to revolutionize petroleum science in much the same way that genomics transformed the study of medicine not long ago. Asphaltenes are a particular focus, with many chapters devoted to the analysis of their structure and properties.

FT-ICR/MS

FT-ICR/MS
Author: B. Asamoto
Publisher: Wiley
Total Pages: 306
Release: 1991-11-11
Genre: Science
ISBN: 9780471187349

An in-depth look at many of the applications where FT-ICR mass spectrometry is implemented. Contributing authors emphasize ways in which FT-ICR provides superior information to that of other types of mass spectrometers as well as where it may be less informative than other mass spectrometers. With the information provided, analytical chemists will be capable of assessing the usefulness of FT-ICR versus other mass spectrometric methods for their particular needs. Comprehensive chapters cover the history of ICR and other techniques based on the cyclotron principles of mass analysis and offer a descriptive explanation of the theory involved in fourier transform detection and analysis. Chapters also detail features and areas of active research in instrumentation and some specifications on commercial instruments as well as the home-built American Cyanamid instrument. Application chapters cover one technique in detail and illustrate its particular area of analysis.

Fourier Transforms in Spectroscopy

Fourier Transforms in Spectroscopy
Author: Jyrki Kauppinen
Publisher: John Wiley & Sons
Total Pages: 271
Release: 2011-02-10
Genre: Science
ISBN: 3527635017

This modern approach to the subject is clearly and logically structured, and gives readers an understanding of the essence of Fourier transforms and their applications. All important aspects are included with respect to their use with optical spectroscopic data. Based on popular lectures, the authors provide the mathematical fundamentals and numerical applications which are essential in practical use. The main part of the book is dedicated to applications of FT in signal processing and spectroscopy, with IR and NIR, NMR and mass spectrometry dealt with both from a theoretical and practical point of view. Some aspects, linear prediction for example, are explained here thoroughly for the first time.

Fourier Transform Infrared Spectrometry

Fourier Transform Infrared Spectrometry
Author: Peter R. Griffiths
Publisher: John Wiley & Sons
Total Pages: 556
Release: 2007-03-16
Genre: Science
ISBN: 0470106298

A bestselling classic reference, now expanded and updated to cover the latest instrumentation, methods, and applications The Second Edition of Fourier Transform Infrared Spectrometry brings this core reference up to date on the uses of FT-IR spectrometers today. The book starts with an in-depth description of the theory and current instrumentation of FT-IR spectrometry, with full chapters devoted to signal-to-noise ratio and photometric accuracy. Many diverse types of sampling techniques and data processing routines, most of which can be performed on even the less expensive instruments, are then described. Extensively updated, the Second Edition: * Discusses improvements in optical components * Features a full chapter on FT Raman Spectrometry * Contains new chapters that focus on different ways of measuring spectra by FT-IR spectrometry, including fourteen chapters on such techniques as microspectroscopy, internal and external reflection, and emission and photoacoustic spectrometry * Includes a new chapter introducing the theory of vibrational spectrometry * Organizes material according to sampling techniques Designed to help practitioners using FT-IR capitalize on the plethora of techniques for modern FT-IR spectrometry and plan their experimental procedures correctly, this is a practical, hands-on reference for chemists and analysts. It's also a great resource for students who need to understand the theory, instrumentation, and applications of FT-IR.

Proteomic Profiling and Analytical Chemistry

Proteomic Profiling and Analytical Chemistry
Author: Pawel Ciborowski
Publisher: Elsevier
Total Pages: 300
Release: 2016-03-02
Genre: Science
ISBN: 0444636900

Proteomic Profiling and Analytical Chemistry: The Crossroads, Second Edition helps scientists without a strong background in analytical chemistry to understand principles of the multistep proteomic experiment necessary for its successful completion. It also helps researchers who do have an analytical chemistry background to break into the proteomics field. Highlighting points of junction between proteomics and analytical chemistry, this resource links experimental design with analytical measurements, data analysis, and quality control. This targeted point of view will help both biologists and chemists to better understand all components of a complex proteomic study. The book provides detailed coverage of experimental aspects such as sample preparation, protein extraction and precipitation, gel electrophoresis, microarrays, dynamics of fluorescent dyes, and more. The key feature of this book is a direct link between multistep proteomic strategy and quality control routinely applied in analytical chemistry. This second edition features a new chapter on SWATH-MS, substantial updates to all chapters, including proteomic database search and analytical quantification, expanded discussion of post-hoc statistical tests, and additional content on validation in proteomics. Covers the analytical consequences of protein and peptide modifications that may have a profound effect on how and what researchers actually measure Includes practical examples illustrating the importance of problems in quantitation and validation of biomarkers Helps in designing and executing proteomic experiments with sound analytics

Fourier Transforms in NMR, Optical, and Mass Spectrometry

Fourier Transforms in NMR, Optical, and Mass Spectrometry
Author: A.G. Marshall
Publisher: Elsevier
Total Pages: 470
Release: 2016-02-25
Genre: Science
ISBN: 148329384X

Written by spectroscopists for spectroscopists, here is a book which is not only a valuable handbook and reference work, but also an ideal teaching text for Fourier transform methods as they are applied in spectroscopy. It offers the first unified treatment of the three most popular types of FT/spectroscopy, with uniform notation and complete indexing of specialized terms. All mathematics is self-contained, and requires only a knowledge of simple calculus. The main emphasis is on pictures and physical analogs rather than detailed algebra. Instructive problems, presented at the end of each chapter, offer extensions of the basic treatment. Solutions are given or outlined for all problems. The book offers a wealth of practical information to spectroscopists. Non-ideal effects are treated in detail: noise (source- and detector-limited); non-linear response; limits to spectrometer performance based on finite detection period, finite data size, mis-phasing, etc. Common puzzles and paradoxes are explained: e.g. use of mathematically complex variables to represent physically real quantities; interpretation of negative frequency signals; on-resonance vs. off-resonance response; interpolation (when it helps and when it doesn't); ultimate accuracy of the data; differences between linearly- and circularly-polarized radiation; multiplex advantage or disadvantage, etc. Chapter 1 introduces the fundamental line shapes encountered in spectroscopy, from a simple classical mass-on-a-spring model. The Fourier transform relationship between the time-domain response to a sudden impulse and the steady-state frequency-domain response (absorption and dispersion spectra) to a continuous oscillation is established and illustrated. Chapters 2 and 3 summarize the basic mathematics (definitions, formulas, theorems, and examples) for continuous (analog) and discrete (digital) Fourier transforms, and their practical implications. Experimental aspects which are common to the signal (Chapter 4) and noise (Chapter 5) in all forms of Fourier transform spectrometry are followed by separate chapters for treatment of those features which are unique to FT/MS, FT/optical, FT/NMR, and other types of FT/spectroscopy. The list of references includes both historical and comprehensive reviews and monographs, along with articles describing several key developments. The appendices provide instant access to FT integrals and fast algorithms as well as a pictorial library of common Fourier transform function pairs. The comprehensive index is designed to enable the reader to locate particular key words, including those with more than one name.

Fourier, Hadamard, and Hilbert Transforms in Chemistry

Fourier, Hadamard, and Hilbert Transforms in Chemistry
Author: Alan Marshall
Publisher: Springer Science & Business Media
Total Pages: 564
Release: 2013-06-29
Genre: Science
ISBN: 1489903364

In virtually all types of experiments in which a response is analyzed as a function of frequency (e. g. , a spectrum), transform techniques can significantly improve data acquisition and/or data reduct ion. Research-level nuclear magnet ic resonance and infra-red spectra are already obtained almost exclusively by Fourier transform methods, because Fourier transform NMR and IR spectrometers have been commercially available since the late 1960·s. Similar transform techniques are equally valuable (but less well-known) for a wide range of other chemical applications for which commercial instruments are only now becoming available: for example, the first corrmercial Fourier transform mass spectrometer was introduced this year (1981) by Nicolet Instrument Corporation. The purpose of this volume is to acquaint practicing chemists with the basis, advantages, and applica of Fourier, Hadamard, and Hilbert transforms in chemistry. For tions almost all chapters, the author is the investigator who was the first to apply such methods in that field. The basis and advantages of transform techniques are described in Chapter 1. Many of these aspects were understood and first applied by infrared astronomers in the 1950·s, in order to improve the otherwise unacceptably poor signal-to-noise ratio of their spec tra. However, the computations required to reduce the data were painfully slow, and required a 1 arge computer.