Foundations of Biomedical Ultrasound

Foundations of Biomedical Ultrasound
Author: Richard S. C. Cobbold
Publisher:
Total Pages: 840
Release: 2007
Genre: Medical
ISBN:

"Drawn from many years of classroom notes, student reactions, and personal experience, Foundations of Biomedical Ultrasound covers the fundamental physics and engineering behind ultrasound systems, properties of acoustic wave motion, the behavior of waves in various media, nonlinear wave propagation, and the formation of ultrasound images. It provides a comprehensive coverage of the field and is an indispensable reference for medical and industrical professionals working with and designing ultrasound systems. The text also provides a valuable introduction to the subject for students."--BOOK JACKET.

Foundations of Biomedical Ultrasound

Foundations of Biomedical Ultrasound
Author: Richard S. C. Cobbold
Publisher: Oxford University Press
Total Pages: 844
Release: 2006-09-07
Genre: Medical
ISBN: 9780199775125

Foundations of Biomedical Ultrasound provides a thorough and detailed treatment of the underlying physics and engineering of medical ultrasound practices. It covers the fundamental engineering behind ultrasound equipment, properties of acoustic wave motion, the behavior of waves in various media, non-linear waves and the creation of images. The most comprehensive book on the subject, Foundations of Biomedical Ultrasound is an indispensable reference for any medical professional working with ultrasound imaging, and a comprehensive introduction to the subject for students. The author has been researching and teaching biomedical ultrasonics at the University of Toronto for the past 25 years.

Basics of Biomedical Ultrasound for Engineers

Basics of Biomedical Ultrasound for Engineers
Author: Haim Azhari
Publisher: John Wiley & Sons
Total Pages: 394
Release: 2010-03-25
Genre: Science
ISBN: 0470561467

A practical learning tool for building a solid understanding of biomedical ultrasound Basics of Biomedical Ultrasound for Engineers is a structured textbook that leads the novice through the field in a clear, step-by-step manner. Based on twenty years of teaching experience, it begins with the most basic definitions of waves, proceeds to ultrasound in fluids and solids, explains the principles of wave attenuation and reflection, then introduces to the reader the principles of focusing devices, ultrasonic transducers, and acoustic fields, and then delves into integrative applications of ultrasound in conventional and advanced medical imaging techniques (including Doppler imaging) and therapeutic ultrasound. Demonstrative medical applications are interleaved within the text and exemplary questions with solutions are provided on every chapter. Readers will come away with the basic toolkit of knowledge they need to successfully use ultrasound in biomedicine and conduct research. Encompasses a wide range of topics within biomedical ultrasound, from attenuation and eflection of waves to the intricacies of focusing devices, transducers, acoustic fields, modern medical imaging techniques, and therapeutics Explains the most common applications of biomedical ultrasound from an engineering point of view Provides need-to-know information in the form of physical and mathematical principles directed at concrete applications Fills in holes in knowledge caused by ever-increasing new applications of ultrasonic imaging and therapy Basics of Biomedical Ultrasound for Engineers is designed for undergraduate and graduate engineering students; academic/research engineers unfamiliar with ultrasound; and physicians and researchers in biomedical disciplines who need an introduction to the field. This book is meant to be “my first book on biomedical ultrasound” for anyone who is interested in the field.

Fundamentals of Medical Imaging

Fundamentals of Medical Imaging
Author: Paul Suetens
Publisher: Cambridge University Press
Total Pages: 265
Release: 2009-08-06
Genre: Medical
ISBN: 1139479881

Fundamentals of Medical Imaging, second edition, is an invaluable technical introduction to each imaging modality, explaining the mathematical and physical principles and giving a clear understanding of how images are obtained and interpreted. Individual chapters cover each imaging modality – radiography, CT, MRI, nuclear medicine and ultrasound – reviewing the physics of the signal and its interaction with tissue, the image formation or reconstruction process, a discussion of image quality and equipment, clinical applications and biological effects and safety issues. Subsequent chapters review image analysis and visualization for diagnosis, treatment and surgery. New to this edition: • Appendix of questions and answers • New chapter on 3D image visualization • Advanced mathematical formulae in separate text boxes • Ancillary website containing 3D animations: www.cambridge.org/suetens • Full colour illustrations throughout Engineers, clinicians, mathematicians and physicists will find this an invaluable aid in understanding the physical principles of imaging and their clinical applications.

Ultrasound Elastography for Biomedical Applications and Medicine

Ultrasound Elastography for Biomedical Applications and Medicine
Author: Ivan Z. Nenadic
Publisher: John Wiley & Sons
Total Pages: 613
Release: 2019-01-22
Genre: Technology & Engineering
ISBN: 1119021510

Ultrasound Elastography for Biomedical Applications and Medicine Ivan Z. Nenadic, Matthew W. Urban, James F. Greenleaf, Mayo Clinic Ultrasound Research Laboratory, Mayo Clinic College of Medicine, USA Jean-Luc Gennisson, Miguel Bernal, Mickael Tanter, Institut Langevin – Ondes et Images, ESPCI ParisTech CNRS, France Covers all major developments and techniques of Ultrasound Elastography and biomedical applications The field of ultrasound elastography has developed various techniques with the potential to diagnose and track the progression of diseases such as breast and thyroid cancer, liver and kidney fibrosis, congestive heart failure, and atherosclerosis. Having emerged in the last decade, ultrasound elastography is a medical imaging modality that can noninvasively measure and map the elastic and viscous properties of soft tissues. Ultrasound Elastography for Biomedical Applications and Medicine covers the basic physics of ultrasound wave propagation and the interaction of ultrasound with various media. The book introduces tissue elastography, covers the history of the field, details the various methods that have been developed by research groups across the world, and describes its novel applications, particularly in shear wave elastography. Key features: Covers all major developments and techniques of ultrasound elastography and biomedical applications. Contributions from the pioneers of the field secure the most complete coverage of ultrasound elastography available. The book is essential reading for researchers and engineers working in ultrasound and elastography, as well as biomedical engineering students and those working in the field of biomechanics.

Biomedical Texture Analysis

Biomedical Texture Analysis
Author: Adrien Depeursinge
Publisher: Academic Press
Total Pages: 432
Release: 2017-08-25
Genre: Computers
ISBN: 0128123214

Biomedical Texture Analysis: Fundamentals, Applications, Tools and Challenges describes the fundamentals and applications of biomedical texture analysis (BTA) for precision medicine. It defines what biomedical textures (BTs) are and why they require specific image analysis design approaches when compared to more classical computer vision applications. The fundamental properties of BTs are given to highlight key aspects of texture operator design, providing a foundation for biomedical engineers to build the next generation of biomedical texture operators. Examples of novel texture operators are described and their ability to characterize BTs are demonstrated in a variety of applications in radiology and digital histopathology. Recent open-source software frameworks which enable the extraction, exploration and analysis of 2D and 3D texture-based imaging biomarkers are also presented. This book provides a thorough background on texture analysis for graduate students and biomedical engineers from both industry and academia who have basic image processing knowledge. Medical doctors and biologists with no background in image processing will also find available methods and software tools for analyzing textures in medical images. - Defines biomedical texture precisely and describe how it is different from general texture information considered in computer vision - Defines the general problem to translate 2D and 3D texture patterns from biomedical images to visually and biologically relevant measurements - Describes, using intuitive concepts, how the most popular biomedical texture analysis approaches (e.g., gray-level matrices, fractals, wavelets, deep convolutional neural networks) work, what they have in common, and how they are different - Identifies the strengths, weaknesses, and current challenges of existing methods including both handcrafted and learned representations, as well as deep learning. The goal is to establish foundations for building the next generation of biomedical texture operators - Showcases applications where biomedical texture analysis has succeeded and failed - Provides details on existing, freely available texture analysis software, helping experts in medicine or biology develop and test precise research hypothesis

Introduction to Medical Imaging

Introduction to Medical Imaging
Author: Nadine Barrie Smith
Publisher: Cambridge University Press
Total Pages:
Release: 2010-11-18
Genre: Technology & Engineering
ISBN: 1139492047

Covering the basics of X-rays, CT, PET, nuclear medicine, ultrasound, and MRI, this textbook provides senior undergraduate and beginning graduate students with a broad introduction to medical imaging. Over 130 end-of-chapter exercises are included, in addition to solved example problems, which enable students to master the theory as well as providing them with the tools needed to solve more difficult problems. The basic theory, instrumentation and state-of-the-art techniques and applications are covered, bringing students immediately up-to-date with recent developments, such as combined computed tomography/positron emission tomography, multi-slice CT, four-dimensional ultrasound, and parallel imaging MR technology. Clinical examples provide practical applications of physics and engineering knowledge to medicine. Finally, helpful references to specialised texts, recent review articles, and relevant scientific journals are provided at the end of each chapter, making this an ideal textbook for a one-semester course in medical imaging.

Cytopathology

Cytopathology
Author: Behdad Shambayati
Publisher: Oxford University Press
Total Pages: 605
Release: 2018
Genre: Medical
ISBN: 0198717369

Cytopathology provides a wide-ranging overview of the microscopic study of normal and abnormal cells, showing how current visualization methods are used to study cell structure, and how early detection of abnormal cell pathology can lead to timely clinical interventions.

Ultrasound

Ultrasound
Author: Edward I. Bluth
Publisher: Thieme
Total Pages: 1658
Release: 2011-01-01
Genre: Medical
ISBN: 3131620323

Based on a popular course taught at the Radiological Society of North America's Annual Meeting, this book provides all the essential information for choosing the appropriate imaging examination and completing the imaging workup of a patient. Chapters are organized into parts according to the anatomical location of the clinical problems addressed. The authors guide the reader through the diagnostic evaluation, reviewing the indications for and the strengths and limitations of ultrasound imaging.Features: Practical information on the usefulness of ultrasound, nonimaging tests, or other imaging modalities, such as CT and MR, for evaluating each clinical situation Clear descriptions of symptoms and differential diagnosis Nearly 1,300 images and photographs demonstrating key points A new chapter on neonatal spinal cord anomalies Comprehensive and up-to-date, this edition is essential for ultrasonographers, radiologists, residents, physicians, nurses, and radiology assistants seeking the latest recommendations for the effective use of ultrasonography.

Biomedical Image Processing

Biomedical Image Processing
Author: Thomas Martin Deserno
Publisher: Springer Science & Business Media
Total Pages: 617
Release: 2011-03-01
Genre: Science
ISBN: 3642158161

In modern medicine, imaging is the most effective tool for diagnostics, treatment planning and therapy. Almost all modalities have went to directly digital acquisition techniques and processing of this image data have become an important option for health care in future. This book is written by a team of internationally recognized experts from all over the world. It provides a brief but complete overview on medical image processing and analysis highlighting recent advances that have been made in academics. Color figures are used extensively to illustrate the methods and help the reader to understand the complex topics.