Foundation Mathematics For Non-Mathematicians

Foundation Mathematics For Non-Mathematicians
Author: Shott, Milo
Publisher: McGraw-Hill Education (UK)
Total Pages: 242
Release: 1990-01-01
Genre: Education
ISBN: 0335092128

This book is for students who either never obtained any formal qualifications in mathematics, or whose knowledge became rusty through prolonged lack of use. It explains mathematical concepts and topics which are prerequisites for a student embarking on any science or other numerically based course in further and higher education. The text contains many worked examples, illustrations and exercises with solutions to reinforce understanding of the material. The emphasis is on a user-friendly approach and simplicity of style - which makes the book easy to study on its own, without any editorial help.

The Foundations of Mathematics

The Foundations of Mathematics
Author: Kenneth Kunen
Publisher:
Total Pages: 251
Release: 2009
Genre: Mathematics
ISBN: 9781904987147

Mathematical logic grew out of philosophical questions regarding the foundations of mathematics, but logic has now outgrown its philosophical roots, and has become an integral part of mathematics in general. This book is designed for students who plan to specialize in logic, as well as for those who are interested in the applications of logic to other areas of mathematics. Used as a text, it could form the basis of a beginning graduate-level course. There are three main chapters: Set Theory, Model Theory, and Recursion Theory. The Set Theory chapter describes the set-theoretic foundations of all of mathematics, based on the ZFC axioms. It also covers technical results about the Axiom of Choice, well-orderings, and the theory of uncountable cardinals. The Model Theory chapter discusses predicate logic and formal proofs, and covers the Completeness, Compactness, and Lowenheim-Skolem Theorems, elementary submodels, model completeness, and applications to algebra. This chapter also continues the foundational issues begun in the set theory chapter. Mathematics can now be viewed as formal proofs from ZFC. Also, model theory leads to models of set theory. This includes a discussion of absoluteness, and an analysis of models such as H( ) and R( ). The Recursion Theory chapter develops some basic facts about computable functions, and uses them to prove a number of results of foundational importance; in particular, Church's theorem on the undecidability of logical consequence, the incompleteness theorems of Godel, and Tarski's theorem on the non-definability of truth.

Mathematical Foundations of Elasticity

Mathematical Foundations of Elasticity
Author: Jerrold E. Marsden
Publisher: Courier Corporation
Total Pages: 578
Release: 2012-10-25
Genre: Technology & Engineering
ISBN: 0486142272

Graduate-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It presents a classical subject in a modern setting, with examples of newer mathematical contributions. 1983 edition.

Mathematics for Machine Learning

Mathematics for Machine Learning
Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
Total Pages: 392
Release: 2020-04-23
Genre: Computers
ISBN: 1108569323

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

The Foundations of Mathematics in the Theory of Sets

The Foundations of Mathematics in the Theory of Sets
Author: John P. Mayberry
Publisher: Cambridge University Press
Total Pages: 454
Release: 2000
Genre: Mathematics
ISBN: 9780521770347

This book presents a unified approach to the foundations of mathematics in the theory of sets, covering both conventional and finitary (constructive) mathematics. It is based on a philosophical, historical and mathematical analysis of the relation between the concepts of 'natural number' and 'set'. The author investigates the logic of quantification over the universe of sets and discusses its role in second order logic, as well as in the analysis of proof by induction and definition by recursion. Suitable for graduate students and researchers in both philosophy and mathematics.

Mathematical Foundations of Information Theory

Mathematical Foundations of Information Theory
Author: Aleksandr I?Akovlevich Khinchin
Publisher: Courier Corporation
Total Pages: 130
Release: 1957-01-01
Genre: Mathematics
ISBN: 0486604349

First comprehensive introduction to information theory explores the work of Shannon, McMillan, Feinstein, and Khinchin. Topics include the entropy concept in probability theory, fundamental theorems, and other subjects. 1957 edition.

Mathematical Foundations of Neuroscience

Mathematical Foundations of Neuroscience
Author: G. Bard Ermentrout
Publisher: Springer Science & Business Media
Total Pages: 434
Release: 2010-07-01
Genre: Mathematics
ISBN: 0387877088

This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.

Mathematical Foundations of Quantum Mechanics

Mathematical Foundations of Quantum Mechanics
Author: John von Neumann
Publisher: Princeton University Press
Total Pages: 462
Release: 1955
Genre: Mathematics
ISBN: 9780691028934

A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books

Mathematical Foundations of Thermodynamics

Mathematical Foundations of Thermodynamics
Author: R. Giles
Publisher: Elsevier
Total Pages: 252
Release: 2016-01-22
Genre: Science
ISBN: 1483184919

Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodynamics, such as physics, engineering, and chemistry.