Formal Logic
Download Formal Logic full books in PDF, epub, and Kindle. Read online free Formal Logic ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Peter Smith |
Publisher | : Cambridge University Press |
Total Pages | : 370 |
Release | : 2003-11-06 |
Genre | : Mathematics |
ISBN | : 9780521008044 |
Formal logic provides us with a powerful set of techniques for criticizing some arguments and showing others to be valid. These techniques are relevant to all of us with an interest in being skilful and accurate reasoners. In this highly accessible book, Peter Smith presents a guide to the fundamental aims and basic elements of formal logic. He introduces the reader to the languages of propositional and predicate logic, and then develops formal systems for evaluating arguments translated into these languages, concentrating on the easily comprehensible 'tree' method. His discussion is richly illustrated with worked examples and exercises. A distinctive feature is that, alongside the formal work, there is illuminating philosophical commentary. This book will make an ideal text for a first logic course, and will provide a firm basis for further work in formal and philosophical logic.
Author | : P. D. Magnus |
Publisher | : |
Total Pages | : 0 |
Release | : 2023 |
Genre | : Logic |
ISBN | : |
Author | : Arnold vander Nat |
Publisher | : Routledge |
Total Pages | : 360 |
Release | : 2010-03-05 |
Genre | : Philosophy |
ISBN | : 1135218706 |
Perfect for students with no background in logic or philosophy, Simple Formal Logic provides a full system of logic adequate to handle everyday and philosophical reasoning. By keeping out artificial techniques that aren’t natural to our everyday thinking process, Simple Formal Logic trains students to think through formal logical arguments for themselves, ingraining in them the habits of sound reasoning. Simple Formal Logic features: a companion website with abundant exercise worksheets, study supplements (including flashcards for symbolizations and for deduction rules), and instructor’s manual two levels of exercises for beginning and more advanced students a glossary of terms, abbreviations and symbols. This book arose out of a popular course that the author has taught to all types of undergraduate students at Loyola University Chicago. He teaches formal logic without the artificial methods–methods that often seek to solve farfetched logical problems without any connection to everyday and philosophical argumentation. The result is a book that teaches easy and more intuitive ways of grappling with formal logic–and is intended as a rigorous yet easy-to-follow first course in logical thinking for philosophy majors and non-philosophy majors alike.
Author | : Paul A. Gregory |
Publisher | : Broadview Press |
Total Pages | : 474 |
Release | : 2017-04-30 |
Genre | : Mathematics |
ISBN | : 1770485945 |
Formal Logic is an undergraduate text suitable for introductory, intermediate, and advanced courses in symbolic logic. The book’s nine chapters offer thorough coverage of truth-functional and quantificational logic, as well as the basics of more advanced topics such as set theory and modal logic. Complex ideas are explained in plain language that doesn’t presuppose any background in logic or mathematics, and derivation strategies are illustrated with numerous examples. Translations, tables, trees, natural deduction, and simple meta-proofs are taught through over 400 exercises. A companion website offers supplemental practice software and tutorial videos.
Author | : Augustus De Morgan |
Publisher | : |
Total Pages | : 376 |
Release | : 1847 |
Genre | : Logic |
ISBN | : |
Author | : Lorne Falkenstein |
Publisher | : Routledge |
Total Pages | : 666 |
Release | : 2021-11-30 |
Genre | : Philosophy |
ISBN | : 1000451275 |
Logic Works is a critical and extensive introduction to logic. It asks questions about why systems of logic are as they are, how they relate to ordinary language and ordinary reasoning, and what alternatives there might be to classical logical doctrines. The book covers classical first-order logic and alternatives, including intuitionistic, free, and many-valued logic. It also considers how logical analysis can be applied to carefully represent the reasoning employed in academic and scientific work, better understand that reasoning, and identify its hidden premises. Aiming to be as much a reference work and handbook for further, independent study as a course text, it covers more material than is typically covered in an introductory course. It also covers this material at greater length and in more depth with the purpose of making it accessible to those with no prior training in logic or formal systems. Online support material includes a detailed student solutions manual with a running commentary on all starred exercises, and a set of editable slide presentations for course lectures. Key Features Introduces an unusually broad range of topics, allowing instructors to craft courses to meet a range of various objectives Adopts a critical attitude to certain classical doctrines, exposing students to alternative ways to answer philosophical questions about logic Carefully considers the ways natural language both resists and lends itself to formalization Makes objectual semantics for quantified logic easy, with an incremental, rule-governed approach assisted by numerous simple exercises Makes important metatheoretical results accessible to introductory students through a discursive presentation of those results and by using simple case studies
Author | : Stephen M. Rice |
Publisher | : Aspen Publishing |
Total Pages | : 429 |
Release | : 2017-05-03 |
Genre | : Law |
ISBN | : 1601566107 |
Have you ever read a legal opinion and come across an odd term like the fallacy of denying the antecedent, the fallacy of the undistributed middle, or the fallacy of the illicit process and wondered how you missed that in law school? You’re not alone: every day, lawyers make arguments that fatally trespass the rules of formal logic—without realizing it—because traditional legal education often overlooks imparting the practical wisdom of ancient philosophy as it teaches students how to “think like a lawyer.” In his book, The Force of Logic: Using Formal Logic as a Tool in the Craft of Legal Argument, lawyer and law professor Stephen M. Rice guides you to develop your powers of legal reasoning in a new way, through effective tips and tactics that will forever change the way you argue your cases. Rice contends that formal logic provides tools that help lawyers distinguish good arguments from bad ones and, moreover, that they are simple to learn and use. When you know how to recognize logical fallacies, you will not only strengthen your own arguments, but you will also be able to punch holes in your opponent’s—and that can make the difference between winning and losing. In this book, Rice builds on the theoretical foundation of formal logic by demonstrating logical fallacies through the use of anecdotes, examples, graphical illustrations, and exercises for you to try that are derived from common case documents. It is a hands-on primer that presents a practical approach for understanding and mastering the place of formal logic in the art of legal reasoning. Whether you are a lawyer, a judge, a scholar, or a student, The Force of Logic will inspire you to love legal argument, and appreciate its beauty and complexity in a brand new way.
Author | : Joseph M. Bochenski |
Publisher | : New York : Chelsea Publishing Company |
Total Pages | : 616 |
Release | : 1970 |
Genre | : Philosophy |
ISBN | : |
Author | : P. T. Geach |
Publisher | : Univ of California Press |
Total Pages | : 356 |
Release | : 1980-04-30 |
Genre | : Philosophy |
ISBN | : 9780520038479 |
"This is a significant and ofren rather demanding collection of essays. It is an anthology purring together the uncollected works of an important twentieth-century philosopher. Many of the articles treat one or another of the more important issues considered by analytic philosophers during the last quarter-century. Of significant importance to philosophers interested in researching the many topics contained in Logic Matters is the inclusion in this anthology of a rather extensive eight-page name-topic index."--Thomist "The papers are arranged by topic: Historical Essays, Traditional Logic, Theory of Reference and Syntax, Intentionality, Quotation and Semantics, Set Theory, Identity Theory, Assertion, Imperatives and Practical Reasoning, Logic in Metaphysics and Theology. The broad range of issues that have engaged Geach's complex and systematic reasoning is impressive. In addition to classical logic, topics in ethics, ontology, and even the logic of religious dogmas are tackled .... the work in this collection is more brilliant and ingenious than it is difficult and demanding."--Philosophy of Science "Geach displays his mastery of applying logical techniques and concepts to philosophical questions. Compared with most works in philosophical logic this book is remarkable for its range of topics. Plato, Aristotle, Aquinas, Russell, Wittgenstein, and Quine all figure prominently. Geach's style is remarkably lively considering the rightly argued matter. Although some of the articles treat rather technical questions in mathematical logic, most are accessible to philosophers with modest backgrounds in logic." --Choice
Author | : L.H. Hackstaff |
Publisher | : Springer Science & Business Media |
Total Pages | : 367 |
Release | : 2012-12-06 |
Genre | : Philosophy |
ISBN | : 9401035474 |
The present work constitutes an effort to approach the subject of symbol ic logic at the elementary to intermediate level in a novel way. The book is a study of a number of systems, their methods, their rela tions, their differences. In pursuit of this goal, a chapter explaining basic concepts of modern logic together with the truth-table techniques of definition and proof is first set out. In Chapter 2 a kind of ur-Iogic is built up and deductions are made on the basis of its axioms and rules. This axiom system, resembling a propositional system of Hilbert and Ber nays, is called P +, since it is a positive logic, i. e. , a logic devoid of nega tion. This system serves as a basis upon which a variety of further sys tems are constructed, including, among others, a full classical proposi tional calculus, an intuitionistic system, a minimum propositional calcu lus, a system equivalent to that of F. B. Fitch (Chapters 3 and 6). These are developed as axiomatic systems. By means of adding independent axioms to the basic system P +, the notions of independence both for primitive functors and for axiom sets are discussed, the axiom sets for a number of such systems, e. g. , Frege's propositional calculus, being shown to be non-independent. Equivalence and non-equivalence of systems are discussed in the same context. The deduction theorem is proved in Chapter 3 for all the axiomatic propositional calculi in the book.