Forecasting With Small Macroeconomic Vars In The Presence Of Instabilities
Download Forecasting With Small Macroeconomic Vars In The Presence Of Instabilities full books in PDF, epub, and Kindle. Read online free Forecasting With Small Macroeconomic Vars In The Presence Of Instabilities ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Todd E. Clark |
Publisher | : |
Total Pages | : 102 |
Release | : 2007 |
Genre | : Economic forecasting |
ISBN | : |
Small-scale VARs have come to be widely used in macroeconomics, for purposes ranging from forecasting output, prices, and interest rates to modeling expectations formation in theoretical models. However, a body of recent work suggests such VAR models may be prone to instabilities. In the face of such instabilities, a variety of estimation or forecasting methods might be used to improve the accuracy of forecasts from a VAR. These methods include using different approaches to lag selection, observation windows for estimation, (over-) differencing, intercept correction, stochastically time--varying parameters, break dating, discounted least squares, Bayesian shrinkage, detrending of inflation and interest rates, and model averaging. Focusing on simple models of U.S. output, prices, and interest rates, this paper compares the effectiveness of such methods. Our goal is to identify those approaches that, in real time, yield the most accurate forecasts of these variables. We use forecasts from simple univariate time series models, the Survey of Professional Forecasters and the Federal Reserve Board's Greenbook as benchmarks
Author | : David E. Rapach |
Publisher | : Emerald Group Publishing |
Total Pages | : 691 |
Release | : 2008-02-29 |
Genre | : Business & Economics |
ISBN | : 044452942X |
Forecasting in the presence of structural breaks and model uncertainty are active areas of research with implications for practical problems in forecasting. This book addresses forecasting variables from both Macroeconomics and Finance, and considers various methods of dealing with model instability and model uncertainty when forming forecasts.
Author | : Peter Fuleky |
Publisher | : Springer Nature |
Total Pages | : 716 |
Release | : 2019-11-28 |
Genre | : Business & Economics |
ISBN | : 3030311503 |
This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.
Author | : Graham Elliott |
Publisher | : Elsevier |
Total Pages | : 1386 |
Release | : 2013-10-24 |
Genre | : Business & Economics |
ISBN | : 0444627413 |
The highly prized ability to make financial plans with some certainty about the future comes from the core fields of economics. In recent years the availability of more data, analytical tools of greater precision, and ex post studies of business decisions have increased demand for information about economic forecasting. Volumes 2A and 2B, which follows Nobel laureate Clive Granger's Volume 1 (2006), concentrate on two major subjects. Volume 2A covers innovations in methodologies, specifically macroforecasting and forecasting financial variables. Volume 2B investigates commercial applications, with sections on forecasters' objectives and methodologies. Experts provide surveys of a large range of literature scattered across applied and theoretical statistics journals as well as econometrics and empirical economics journals. The Handbook of Economic Forecasting Volumes 2A and 2B provide a unique compilation of chapters giving a coherent overview of forecasting theory and applications in one place and with up-to-date accounts of all major conceptual issues. - Focuses on innovation in economic forecasting via industry applications - Presents coherent summaries of subjects in economic forecasting that stretch from methodologies to applications - Makes details about economic forecasting accessible to scholars in fields outside economics
Author | : Michael P. Clements |
Publisher | : Oxford University Press |
Total Pages | : 732 |
Release | : 2011-06-29 |
Genre | : Business & Economics |
ISBN | : 0199875510 |
This Handbook provides up-to-date coverage of both new and well-established fields in the sphere of economic forecasting. The chapters are written by world experts in their respective fields, and provide authoritative yet accessible accounts of the key concepts, subject matter, and techniques in a number of diverse but related areas. It covers the ways in which the availability of ever more plentiful data and computational power have been used in forecasting, in terms of the frequency of observations, the number of variables, and the use of multiple data vintages. Greater data availability has been coupled with developments in statistical theory and economic analysis to allow more elaborate and complicated models to be entertained; the volume provides explanations and critiques of these developments. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models, as well as models for handling data observed at mixed frequencies, high-frequency data, multiple data vintages, methods for forecasting when there are structural breaks, and how breaks might be forecast. Also covered are areas which are less commonly associated with economic forecasting, such as climate change, health economics, long-horizon growth forecasting, and political elections. Econometric forecasting has important contributions to make in these areas along with how their developments inform the mainstream.
Author | : Todd E. Clark |
Publisher | : |
Total Pages | : 70 |
Release | : 2007 |
Genre | : Economic forecasting |
ISBN | : |
A body of recent work suggests commonly-used VAR models of output, inflation, and interest rates may be prone to instabilities. In the face of such instabilities, a variety of estimation or forecasting methods might be used to improve the accuracy of forecasts from a VAR. These methods include using different approaches to lag selection, different observation windows for estimation, (over-) differencing, intercept correction, stochastically time-varying parameters, break dating, discounted least squares, Bayesian shrinkage, and detrending of inflation and interest rates. Although each individual method could be useful, the uncertainty inherent in any single representation of instability could mean that combining forecasts from the entire range of VAR estimates will further improve forecast accuracy. Focusing on models of U.S. output, prices, and interest rates, this paper examines the effectiveness of combination in improving VAR forecasts made with real-time data. The combinations include simple averages, medians, trimmed means, and a number of weighted combinations, based on: Bates-Granger regressions, factor model estimates, regressions involving just forecast quartiles, Bayesian model averaging, and predictive least squares-based weighting. Our goal is to identify those approaches that, in real time, yield the most accurate forecasts of these variables. We use forecasts from simple univariate time series models and the Survey of Professional Forecasters as benchmarks.
Author | : Graham Elliott |
Publisher | : Elsevier |
Total Pages | : 667 |
Release | : 2013-08-23 |
Genre | : Business & Economics |
ISBN | : 0444627405 |
The highly prized ability to make financial plans with some certainty about the future comes from the core fields of economics. In recent years the availability of more data, analytical tools of greater precision, and ex post studies of business decisions have increased demand for information about economic forecasting. Volumes 2A and 2B, which follows Nobel laureate Clive Granger's Volume 1 (2006), concentrate on two major subjects. Volume 2A covers innovations in methodologies, specifically macroforecasting and forecasting financial variables. Volume 2B investigates commercial applications, with sections on forecasters' objectives and methodologies. Experts provide surveys of a large range of literature scattered across applied and theoretical statistics journals as well as econometrics and empirical economics journals. The Handbook of Economic Forecasting Volumes 2A and 2B provide a unique compilation of chapters giving a coherent overview of forecasting theory and applications in one place and with up-to-date accounts of all major conceptual issues. - Focuses on innovation in economic forecasting via industry applications - Presents coherent summaries of subjects in economic forecasting that stretch from methodologies to applications - Makes details about economic forecasting accessible to scholars in fields outside economics
Author | : Mr.Jorge A. Chan-Lau |
Publisher | : International Monetary Fund |
Total Pages | : 34 |
Release | : 2017-05-05 |
Genre | : Business & Economics |
ISBN | : 1475599021 |
Model selection and forecasting in stress tests can be facilitated using machine learning techniques. These techniques have proved robust in other fields for dealing with the curse of dimensionality, a situation often encountered in applied stress testing. Lasso regressions, in particular, are well suited for building forecasting models when the number of potential covariates is large, and the number of observations is small or roughly equal to the number of covariates. This paper presents a conceptual overview of lasso regressions, explains how they fit in applied stress tests, describes its advantages over other model selection methods, and illustrates their application by constructing forecasting models of sectoral probabilities of default in an advanced emerging market economy.
Author | : Regina Kaiser |
Publisher | : Springer Science & Business Media |
Total Pages | : 198 |
Release | : 2012-12-06 |
Genre | : Business & Economics |
ISBN | : 1461301297 |
This book outlines and demonstrates problems with the use of the HP filter, and proposes an alternative strategy for inferring cyclical behavior from a time series featuring seasonal, trend, cyclical and noise components. The main innovation of the alternative strategy involves augmenting the series forecasts and back-casts obtained from an ARIMA model, and then applying the HP filter to the augmented series. Comparisons presented using artificial and actual data demonstrate the superiority of the alternative strategy.
Author | : Thomas B. Fomby |
Publisher | : Emerald Group Publishing Limited |
Total Pages | : 0 |
Release | : 2013-12-18 |
Genre | : Business & Economics |
ISBN | : 9781781907528 |
Advances in Econometrics publishes original scholarly econometric papers with the intention of expanding the use of developed and emerging econometric techniques by disseminating ideas on the theory and practice of econometrics, throughout the empirical economic, business and social science literature.