Boundary-Layer Theory

Boundary-Layer Theory
Author: Hermann Schlichting (Deceased)
Publisher: Springer
Total Pages: 814
Release: 2016-10-04
Genre: Technology & Engineering
ISBN: 366252919X

This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.

Advances in Fluid and Thermal Engineering

Advances in Fluid and Thermal Engineering
Author: Basant Singh Sikarwar
Publisher: Springer Nature
Total Pages: 702
Release: 2023-07-11
Genre: Science
ISBN: 9819923824

This volume comprises the select proceedings of the 3rd Biennial International Conference on Future Learning Aspects of Mechanical Engineering (FLAME-2022). It aims to provide a comprehensive and broad-spectrum picture of state-of-the-art research and development in thermal and fluid engineering. Various topics covered include flow analysis, thermal systems, flow instability, renewable energy, hydel and wind power systems, heat transfer augmentation, biomimetic/ bioinspired engineering, heat pipes, heat pumps, multiphase flow/ heat transfer, energy conversion, thermal hydraulics of nuclear systems, refrigeration, and HVAC systems, computational fluid dynamics, fluid-structure interaction, etc. This volume will prove a valuable resource for those in academia and industry.

Stability and Transition in Shear Flows

Stability and Transition in Shear Flows
Author: Peter J. Schmid
Publisher: Springer Science & Business Media
Total Pages: 561
Release: 2012-12-06
Genre: Science
ISBN: 1461301858

A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.