Flight Dynamics and Control of Aero and Space Vehicles

Flight Dynamics and Control of Aero and Space Vehicles
Author: Rama K. Yedavalli
Publisher: John Wiley & Sons
Total Pages: 554
Release: 2020-02-25
Genre: Technology & Engineering
ISBN: 1118934458

Flight Vehicle Dynamics and Control Rama K. Yedavalli, The Ohio State University, USA A comprehensive textbook which presents flight vehicle dynamics and control in a unified framework Flight Vehicle Dynamics and Control presents the dynamics and control of various flight vehicles, including aircraft, spacecraft, helicopter, missiles, etc, in a unified framework. It covers the fundamental topics in the dynamics and control of these flight vehicles, highlighting shared points as well as differences in dynamics and control issues, making use of the ‘systems level’ viewpoint. The book begins with the derivation of the equations of motion for a general rigid body and then delineates the differences between the dynamics of various flight vehicles in a fundamental way. It then focuses on the dynamic equations with application to these various flight vehicles, concentrating more on aircraft and spacecraft cases. Then the control systems analysis and design is carried out both from transfer function, classical control, as well as modern, state space control points of view. Illustrative examples of application to atmospheric and space vehicles are presented, emphasizing the ‘systems level’ viewpoint of control design. Key features: Provides a comprehensive treatment of dynamics and control of various flight vehicles in a single volume. Contains worked out examples (including MATLAB examples) and end of chapter homework problems. Suitable as a single textbook for a sequence of undergraduate courses on flight vehicle dynamics and control. Accompanied by a website that includes additional problems and a solutions manual. The book is essential reading for undergraduate students in mechanical and aerospace engineering, engineers working on flight vehicle control, and researchers from other engineering backgrounds working on related topics.

Performance Evaluation and Design of Flight Vehicle Control Systems

Performance Evaluation and Design of Flight Vehicle Control Systems
Author: Eric T. Falangas
Publisher: John Wiley & Sons
Total Pages: 432
Release: 2015-12-21
Genre: Technology & Engineering
ISBN: 1119009766

The purpose of this book is to assist analysts, engineers, and students toward developing dynamic models, and analyzing the control of flight vehicles with various blended features comprising aircraft, launch vehicles, reentry vehicles, missiles and aircraft. Graphical methods for analysing vehicle performance Methods for trimming deflections of a vehicle that has multiple types of effectors Presents a parameters used for speedily evaluating the performance, stability, and controllability of a new flight vehicle concept along a trajectory or with fixed flight conditions

Optimal Trajectories in Atmospheric Flight

Optimal Trajectories in Atmospheric Flight
Author: Nguyen Vinh
Publisher: Elsevier
Total Pages: 421
Release: 2012-12-02
Genre: Technology & Engineering
ISBN: 0444601457

Optimal Trajectories in Atmospheric Flight deals with the optimization of trajectories in atmospheric flight. The book begins with a simple treatment of functional optimization followed by a discussion of switching theory. It then presents the derivation of the general equations of motion along with the basic knowledge in aerodynamics and propulsion necessary for the analysis of atmospheric flight trajectories. It goes on to the study of optimal trajectories by providing the general properties of the optimal aerodynamic controls and the integrals of motion. This is followed by discussions of high subsonic and supersonic flight, and approximation techniques to reduce the order of the problem for a fast computation of the optimal trajectory. The final chapters present analyses of optimal reentry trajectories and orbital maneuvers. This book is intended as a reference text for scientists and engineers wanting to get into the subject of optimal trajectories in atmospheric flight. If used for teaching purposes, the book is written in a self-contained way so that a selective use of the material is at the discretion of the lecturer. The first 11 chapters are sufficient for a one-semester course with emphasis on optimal maneuvers of high performance aircraft.

Flight Dynamics

Flight Dynamics
Author: Robert F. Stengel
Publisher: Princeton University Press
Total Pages: 914
Release: 2022-11-01
Genre: Science
ISBN: 0691237042

An updated and expanded new edition of an authoritative book on flight dynamics and control system design for all types of current and future fixed-wing aircraft Since it was first published, Flight Dynamics has offered a new approach to the science and mathematics of aircraft flight, unifying principles of aeronautics with contemporary systems analysis. Now updated and expanded, this authoritative book by award-winning aeronautics engineer Robert Stengel presents traditional material in the context of modern computational tools and multivariable methods. Special attention is devoted to models and techniques for analysis, simulation, evaluation of flying qualities, and robust control system design. Using common notation and not assuming a strong background in aeronautics, Flight Dynamics will engage a wide variety of readers, including aircraft designers, flight test engineers, researchers, instructors, and students. It introduces principles, derivations, and equations of flight dynamics as well as methods of flight control design with frequent reference to MATLAB functions and examples. Topics include aerodynamics, propulsion, structures, flying qualities, flight control, and the atmospheric and gravitational environment. The second edition of Flight Dynamics features up-to-date examples; a new chapter on control law design for digital fly-by-wire systems; new material on propulsion, aerodynamics of control surfaces, and aeroelastic control; many more illustrations; and text boxes that introduce general mathematical concepts. Features a fluid, progressive presentation that aids informal and self-directed study Provides a clear, consistent notation that supports understanding, from elementary to complicated concepts Offers a comprehensive blend of aerodynamics, dynamics, and control Presents a unified introduction of control system design, from basics to complex methods Includes links to online MATLAB software written by the author that supports the material covered in the book

Introduction to Aircraft Flight Mechanics

Introduction to Aircraft Flight Mechanics
Author: Thomas R. Yechout
Publisher: AIAA
Total Pages: 666
Release: 2003
Genre: Aerodynamics
ISBN: 9781600860782

Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.

Atmospheric Re-Entry Vehicle Mechanics

Atmospheric Re-Entry Vehicle Mechanics
Author: Patrick Gallais
Publisher: Springer Science & Business Media
Total Pages: 365
Release: 2007-09-23
Genre: Technology & Engineering
ISBN: 3540736476

Based on a long engineering experience, this book offers a comprehensive and state-of-the-art analysis of aerodynamic and flight mechanic entry topics. This updated edition had new chapters on Re-entry on Mars mission, flight quality, rarefied aerodynamics and re-entry accuracy. In addition, it provides a large set of application exercises and solutions.

Atmospheric and Space Flight Dynamics

Atmospheric and Space Flight Dynamics
Author: Ashish Tewari
Publisher: Springer Science & Business Media
Total Pages: 567
Release: 2007-11-15
Genre: Technology & Engineering
ISBN: 0817644385

This book offers a unified presentation that does not discriminate between atmospheric and space flight. It demonstrates that the two disciplines have evolved from the same set of physical principles and introduces a broad range of critical concepts in an accessible, yet mathematically rigorous presentation. The book presents many MATLAB and Simulink-based numerical examples and real-world simulations. Replete with illustrations, end-of-chapter exercises, and selected solutions, the work is primarily useful as a textbook for advanced undergraduate and beginning graduate-level students.